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Abstract. Gaussian kernels are widely used in many data analysis tools such as
Radial-Basis Function networks, Support Vector Machines and many others. Gaus-
sian kernels are most often deemed to provide a local measure of similarity between
vectors. In this paper, we show that Gaussian kernels are adequate measures of
similarity when the representation dimension of the space remains small, but that
they fail to reach their goal in high-dimensional spaces. We suggest the use of p-
Gaussian kernels that include a supplementary degree of freedom in order to adapt
to the distribution of data in high-dimensional problems. The use of such more
flexible kernel may greatly improve the numerical stability of algorithms, and also
the discriminative power of distance- and neighbor-based data analysis methods.
Keywords: High dimensional spaces, Local Models, Gaussian Kernels.

1 Introduction

Data analysis is one of the areas where artificial neural networks and machine
learning techniques in general, have the most impact. During the last twenty
years, there has been a considerable effort to develop data analysis techniques
that are adapted to the abundance of data in nowadays information society.
Although those tools are different in many aspects, be it from theoretical,
technical or historical point of view, many of them share a common charac-
teristic: for one reason or another, they use kernels. This is for example the
case for Radial-Basis Function Networks (RBFN) [Bishop, 1995], for Sup-
port Vector Machines (SVM) [Cristianini and Shawe-Taylor, 2000], but also
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for the more traditional Parzen estimators of probability densities [Parzen,
1962], for mixtures of Gaussians [McLachlan and Peel, 2000], etc.

Kernels can be defined in various ways. In most cases however, Kernel
means a function whose value only depends on a distance between the input
and a constant, named center; the input and the center may be vectors. Nat-
urally, the most often used kernel is the Gaussian one. There are several good
justifications to using Gaussian kernels. The first one is that the Gaussian
function is a natural one: by the Central Limit Theorem, the sum of inde-
pendent variables having the same distribution, whatever the distribution is,
tends to a Gaussian distribution as the number of terms in the sum tends
to infinity. The Gaussian function or distribution is also the only one that
can be described without loss of information by its two first moments; it is
therefore of particular interest for second-order statistics, including all linear
data analysis methods.

Besides these general considerations, Gaussian kernels are most often used
for their locality property: it is obvious that the Gaussian output may be
considered as high when the input is close from the center and low (or even
negligible) when the argument is far from the center. Locality is a primary
importance concept for many reasons that range from the interpretability
of the models to their numerical stability, through experimentally observed
advantages with specific types of data.

This paper aims to show that the use of Gaussian kernels may be valid
when the data are represented in low-dimensional spaces, but fails to reach
its objectives in high-dimensional spaces. It is shown that high-dimensional
Gaussian kernels are usually not local, and cannot be made local through scal-
ing factors. This paper suggests using the so-called Generalized p-Gaussian
kernel, which can be made local in any-dimensional space through the adap-
tation of a supplementary parameter.

This paper is organized as follows. Section 2 briefly recalls why the con-
cept of locality is important in data analysis methods. Section 3 shows that
Gaussian kernels are not local functions in high-dimensional spaces. Finally,
in Section 4 Generalized p-Gaussian kernels are introduced as a possible al-
ternative to Gaussian kernels for high-dimensional data analysis methods.

2 Why is locality so important?

While the locality property seems important in many algorithms, few papers
address the reasons why it is indeed important. In the following, some in-
tuitive arguments in the favor of local kernels are developed, without any
attempt to be exhaustive.

2.1 Interpretability

The main argument for locality is interpretability. In most if not all applica-
tions, practitioners are not happy about responses given by blind models, i.e.
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models that do not provide interpretability of their outputs. Nevertheless
several algorithms are mostly blind, or at least have the reputation to be
blind; examples are feed-forward artificial neural networks such as the Multi-
Layer Perceptron (MLP) and RBFN. Interpretation in the latter models can
however come from an examination of their hidden units outputs.

Indeed, the Kernel function can be seen as measure of similarity. The
range of the kernel is between zero and one (note that when kernels are used
for density estimation they are normalized so that their integral equals one ;
this is not the case here. In any case, scaling does not change the arguments
below). An input may be considered as close to the kernel center when the
kernel output is near 1, and far when the output is near 0 ; indeed the ouptu
of a Gaussian kernel decreases from 1 to 0 according to a negative exponential
of the squared Euclidean distance between the vectors. Kernels may then be
used to express in a numerical form the intuitive notion of closeness, i.e.
similarity, with the continuity and derivability properties that are necessary
in most algorithms. Regions spanned by kernels up to the limits defined (in
afuzzy way) by the notion of closeness may help to the interpretation of the
model.

The closeness concept is essential in local mmodels. For instance, RBFN
and SVM models build the output corresponding to a new input x as a
weighted sum of the output values associated to certain entities living in
the input space (respectively called centroids and support vectors) ; while
the weight is the similarity measurement between x and those entities. In
other words, the more similar the new input is to a given entity, the more
importance that entity has in computing the predicted value. Many Lazy
Learning methods can be interpreted this way too.

2.2 Numerical stability

For RBFN as for SVM, the values of each kernel at each data point is gathered
into a matrix which is used to formulate the corresponding optimization
problem. The conditioning, and thus the sensitivity and numerical stability
of the problem, depends on the condition number of that matrix. This section
illustrates the fact that building a kernel-based model leads to an ill-formed
optimization problem when locality of the kernels is not ensured.

Suppose N points randomly drawn according to a uniform distribution
in the [0, 1]d d-dimensional cube. A vector quantization is then performed
on these N points to obtain M centroids, representative on the initial dis-
tribution. A traditional RBFN learning consists in placing Gaussian kernels
on each of the M centroids, and evaluating the scalar RBFN output as a
linear combination of the kernel outputs [Hwang and Bang, 1997]. The M
linear coefficients are found by least squares. The matrix of the system is
the N × M matrix built by evaluating each kernel on each data point. It is
known that the numerical stability of the system depends on the condition
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Fig. 1. Condition number of the system matrix in a RBF network, with respect to
the standard deviation (width) of the kernels.

number of the matrix, which is defined as the ratio between the largest and
smallest singular value of the matrix [Golub and van Loan, 1996].

Figure 1 shows an example of this condition number, for a system with
200 data points and 10 centroids. The condition number is plotted versus the
common standard deviation (width) of the kernels. As the centroids learned
by vector quantization have a distribution equal to the distribution of the
initial data, i.e. they are uniformly distributed, it is natural to assume that
all kernel standard deviations are equal.

One can see on Figure 1 that an optimum exists in the condition number
of the system matrix, corresponding to an optimal standard deviation. While
the exact value does not matter here, one can easily see that deviations much
smaller or larger than the optimal lead to ill-conditioned matrices.

If the standard deviation is too small, the Gaussian kernels will not reach
(with a significant value) the data points, even those that are close to the
centroids. Very large coefficients will thus result from the system solution,
both in positive and negative values, in order to both include all data into
the radius of attraction of at least one Gaussian kernel, and at the same
time keeping a weighted sum into a small range (corresponding to a smooth
function to approximate).

On the contrary, if the standard deviation is too large, the Gaussian ker-
nels will be very flat, leading to having most or all points into their respective
radius of attraction. Approximating a smooth but non-flat (constant) func-
tion therefore also results in very large, both positive and negative, model
coefficients.

Both situations therefore lead to ill-defined systems. Locality (not too
large standard deviation) is thus also important for the numerical stability
of the algorithms. Of course, too narrow kernels should be avoided too, as
this corresponds to a kind of overfitting.
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3 Gaussian kernels are not adequate in

high-dimensional spaces

At first sight, the objective, i.e. measuring the similarity between two vectors,
and the way to reach the goal, i.e. using a Gaussian kernel, perfectly match.
However, without reference to Gaussian kernels, one could define an ideal
kernel as a kernel whose output gives an acceptable measure of the similarity
between two vectors; acceptable means for example that among a finite dis-
tribution, the closest vectors to a query should be evaluated as similar to the
query, while vectors that are far from the query should be evaluated as non
similar. In other words, among a finite distribution, the selected similarity
measure should be able to find in acceptable proportions both similar and
non similar vectors to a query point. In the next section, it will be shown
that Gaussian kernels fit with this definition in low-dimensional spaces, while
they do not fit it in high-dimensional spaces. To illustrate this problem, let
us imagine that data have a Gaussian distribution centered at C (the follow-
ing is qualitatively valid for any distribution though). We will compare the
distribution of distances between any point and C, to the shape of a kernel
centered on C too. As the kernel will be used to assess if points are close or
not from C, this experiment allows to verify that the kernel is discriminative
(is not too flat) in the effective range of the distance distribution. On Figure
2, the thick line represents the kernel value, while the thin line (and grayed
area) represent the distance distribution. One easily sees on graphs (a) and
(b) that, in low dimension, for a well-chosen kernel width value, the small
(resp. large) distances in the distribution will be mapped onto kernel values
close to one (resp. zero). This matches the definition of an ideal kernel as
detailed in the previous paragraph.

However when the space dimension increases, the correspondence between
the range of distances in the histogram, and the range of the decreasing slope
in the Gaussian kernel cannot be guaranteed anymore. Graphs (c) and (d)
refer to space dimensions 10 and 100 respectively, for several kernel width
values. It is seen that it is more difficult to adjust the value of the kernel
width is in order to cope with the ideal kernel definition: in all cases, there is
a large part of the Gaussian kernel decreasing slope that falls out of the range
of distances in the histogram. This means that close distances (left queue
of the distribution) and large distances (right queue of the distribution) are
hardly distinguishable from their kernel values; the notion of similarity itself
(are data close or far one from another) looses its significance. Needless to
say, the consequences in methods based on nearest neighbors are dramatic.

Another view of the same phenomenon comes from the following exper-
iment. Let us imagine a d-dimensional uniform distribution, quantized into
a predefined number M of centroids. A Gaussian kernel is centered on each
initial point of the distribution; the kernel is evaluated on the furthest and
closest centroids. Then the difference between the two Gaussian outputs is
taken, and averaged over all points of the distribution. The result is repre-
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Fig. 2. Kernel values as a function of the distance to their centers for several space
dimensions, along with the distribution of distances for normally distributed data.
Vertical lines correspond to 5 and 95 percentile resp.

sentative of the contrast between the similarity of a point to its closest and
furthest away centroids; if the contrast is large, a model built with such a
kernel can be considered ‘local’ ; if it is small, the notion of neighborhood
looses its significance.

Figure 3 shows this contrast with respect to the width of the kernels.
In dimension 2 (left), the contrast is close to 1 for a well-chosen value of
the kernel; distances are easily distinguishable. Note that the ideal kernel
standard deviation is relatively small, which corresponds to a kernel having a
local character. In dimension 100, the contrast hardly reaches 0.2; distances
are far less distinguishable, whatever the kernel standard deviation is.

4 Recovering locality in HD spaces

The necessity to more or less span the effective range of distances between
data in a real distribution setting, by the effective part of the kernel (i.e. the
part with the decreasing slope), requires to add a parameter with respect to
the Gaussian kernel. Besides the width that controls the slope of the kernel,
there is a need for a supplementary parameter that controls the smallest
distance corresponding to the decreasing part of the kernel. An example of
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Fig. 3. Contrast (see definition in text) in a 2-dimensional (left) and a 100-
dimensional (right) uniform distribution, with respect to the kernel standard devi-
ation.

kernel that fulfills this requirement is the p-Gaussian kernel :

K(x, y) = exp(−d(x, y)p/σp),

where p and σ are the two parameters. Normalizing coefficient for density
estimation can be found in [Kassam, 1988], but once again this is not needed
for measuring similarities. Figure 4 (left) shows an example of p-Gaussian
kernel, width p = 11 and σ = 4.3. It is seen that the kernel slope effectively
covers the range of distances, according to the definition of ideal kernel

The method to set adequate values to p and σ can easily be deduced from
the same requirements. As the decreasing slope of the kernel has to cover the
effective range distances in the histogram built on the sample distribution,
two equations can be deduced once this range is known: one for the lowest
value of the range, one for the highest one. Of course, as we are speaking
about distributions, taking extreme values is not a good idea; rather, for
example, the 5% and 95% percentiles of the distribution should be estimated.
Let dN and dF be these two values respectively. Then two equations can be
written by making the p-Gaussian kernel evaluated at dN (resp. dF ) equal
to 95% (resp. 5%) of the full kernel range :

p =
ln

(

ln(0.05)
ln(0.95)

)

ln dF

dN

; σ =
dN

(− ln(0.05))1/p
=

dF

(− ln(0.95))1/p

Figure 4 (right) shows the results of the experiment described earlier to
estimate the contrast, with respectively, the Gaussian kernel and a kernel
with optimized p and σ values.

5 Conclusion

Local kernels or functions are used in many data analysis paradigms and al-
gorithms, such as Radial-Basis Function networks, Support Vector Machines,
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Fig. 4. (left) Kernel values along with distance distribution for the ideal kernel,
p = 11; (right) contrast for Gaussian kernel and ideal kernel in dimension 100.

some Vector Quantization methods, etc. Locality is used as a way of inter-
pretation, and also to provide measures of similarities between data. In this
paper, we show that the widely used Gaussian Kernel is appropriate to rep-
resent similarities in low-dimensional spaces, but fails to fulfill this goal in
high-dimensional ones. When similarities cannot be expected anymore to
be measured adequately, many problems may be expected, for example in
nearest neighbor search. The numerical stability of the methods may be lost.

p-Gaussian kernels are presented as an alternative to Gaussian kernels.
An additional parameter makes it possible to keep the effective part of the
Gaussian slope in the effective part of the distribution of distances between
data. In this way, p-Gaussian kernels will adequately discriminate small and
large distances between pairs of data even in a high-dimensional setting, a
task that Gaussian kernel fails to fulfill. A methodology is presented to set
the parameters according to a specific data sample. Future work will consist
in using such flexible kernels in learning algorithms for high-dimensional data.
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