
Visualisation and exploration of

high-dimensional data

using a “force directed placement”method:

application to the analysis

of genomic signatures

Sylvain Lespinats, Alain Giron, and Bernard Fertil
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Abstract. Visualization of high-dimensional data is generally achieved by pro-
jection in a low dimensional space (usually 2 to 3 dimensions). Visualization is
designed to facilitate the understanding of data sets by preserving some “essen-
tial”information. We have designed a non-linear multi-dimensional-scaling (MDS)
tool relying on the force directed placement (FDP) algorithm to help dynamically
discover features of interest in data sets. A user-driven relaxation of constraints
built on the preservation of pairwise distances between data allows getting subjec-
tive representations of data that meet some specific angle. In a context of classifica-
tion, we examine the impact of metric, sample size, and neighborhood preservation
on the mapping of genomic signatures.
Keywords: Multi-Dimensional Scaling, Force Directed Placement, Classification,
Proximity visualisation, Metric.

1 Introduction

High dimensional data raise unusual problems of analysis, given that some
properties of the spaces they live in cannot be extrapolated from our current
experience [Verleysen, 2001]. The notion of neighborhood in particular must
be revised to take into account the number of dimensions. In particular
(notably in the case of Euclidean spaces), we often face the problems of
empty space and concentration of measure: when the number of dimensions
is high, the neighborhood of each object is scarcely filled whereas most of
the other objects are found in a thin outer shell. Distances between high
dimensional objects are usually very concentrated around their average.

Exploration and analysis of high dimensional data are often made by
means of dimension reduction techniques. Since human experience mostly
deals with 3D space (and most data display devices are two-dimensional),
finding a meaningful mapping of data in such low dimensional spaces is the
issue. Principal component analysis (PCA), multidimensional scaling (MDS)
[Cox and Cox, 1994], Kohonen maps (SOM) [Kohonen, 1997] are classic ap-
proaches in this context. In general, a loss function is defined to characterize



Visualisation and exploration of high-dimensional data. . . 231

the error in representing the dissimilarity between objects. It allows building
the rules of projection from the original space of the data on to a smaller
dimensional space. It is important to realize that any reduction of dimen-
sion leads to a subjective data representation. Depending on the purpose,
different mappings may be achieved for the same set of data. For classifica-
tion tasks, for example, the preservation of the neighborhood appears one of
the aspects important to master. In this work, we examine some interest-
ing mappings obtained by means of a nonlinear MDS-based projection. In
particular, the consequences of dimension reduction on the classification of
genomic signatures (256-dimension data originally) are analyzed.

2 Reduction of data dimension: principles ruling the

present study

The approach that is presented here belongs to the MDS group of methods.
It is thus advisable to define metrics for the original data space and for the
target space (called output space thereafter), a lost function and a mapping
algorithm. Usually, the characteristics of the data to be analyzed are to be
considered to choose these various elements.

2.1 Data, metric and lost function

Data under investigation in this work concern the genomic signature. The
whole set of short oligonucleotide frequencies observed in a DNA sequence is
species-specific and is thus considered as a genomic signature (Deschavanne et
al., Karlin et al.). The genomic signature characterizes the DNA molecule by
256 frequency variables, defined in the range [0-1]. Counts (and frequencies)
of oligonucleotides can be displayed as parametric images allowing fast visual
examination and comparison (http://genstyle.imed.jussieu.fr). It has been
observed that the genomic signature results from a species-specific “writing
style”[Deschavanne et al., 1999]. Indeed, on one hand, the genomic signa-
tures of species differ from one another; on the other hand, the majority of
DNA segments isolated from the genome of a given species have comparable
signatures. As a consequence, each species is given a genomic signature that
can be derived from most of its available DNA fragments. The DNA style is
obtained from the examination of relatively small chains of the genetic ma-
terial. In practice, a sequence as short as 2000 nucleotides usually provides
a good estimate.

The Euclidean metric allows showing statistically significant differences
between species’ genomic signatures [Deschavanne et al., 1999]. This metric
will thus be chosen to illustrate the method, for typical examples at first
(projection from a 3D space towards a 2D space), then for the problem of
classification of genomic signatures. In some instances, we may consider pre-
serving only the rank order of distances between objets, not the exact values.
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Such a procedure is found useful when the projection provides “unsatisfac-
tory”results. The projection should then try matching the rank order of
distances between objects in the two-dimensional output space to the rank
order in the original space.

The lost function is defined as a weighted sum of errors over dissimilarities
(distances or ranks) between all pairs of objects in the original space and the
output space. Eventually, subsets of data may be considered to test the ro-
bustness of projection. A part of data is used to define the mapping whereas
the remaining part serves checking representiveness of output space. In order
to preferentially favor close proximity, a weighting scheme reducing the im-
pact of errors related to large dissimilarities may be gradually applied during
the phase of optimization. This approach takes benefit from the work by P.
Demartine and J. Herault [Demartine and Herault, 1997] and T. Kohonen
[Kohonen, 1997].

2.2 Loss function minimization algorithm

In general, the optimal position of data in the output space cannot be ob-
tained analytically. It is necessary to implement a function minimization al-
gorithm with widely recognized robustness and convergence aptitudes. Clas-
sically, in the context of MDS, one alternatively uses the generalized Newton-
Raphson algorithm, TABU Search [Glover and Laguna, 1995], genetic algo-
rithms [Goldberg, 1989] or simulated annealing [Dowsland, 1995].

Regarding our model (called FDP-MDS thereafter), we propose to set up
a dynamic algorithm grounded on the “Force Directed Placement”paradigm
(FDP) [Fruchterman and Reingold, 1999]. Firstly described at the beginning
of the Eighties, the FPD method is yet popular in only a limited number of
fields. In particular, it is extensively used for the design of printed circuits.
It is on the other hand little known in the field of data analysis. The force
directed placement metaphor may be clarified in the following way: the data
to place in the output space are bounded by forces (materialized by springs
for example) the magnitude of which are related to the satisfaction of dissim-
ilarities. In the case of springs, length at rest corresponds to the dissimilarity
between the connected objects in data space. Any departure from the resting
value consequently results in a recall force contributing in the movement of
object and accounting for the energy of the system. Starting from an initial
state with the objects placed the most judiciously possible in output space,
the system is allowed to relax towards a minimum state of energy for which
the constraints of dissimilarities between objects are satisfied as much as pos-
sible. FPD algorithm is very interesting in the case of MDS, considering its
speed of convergence and its possibilities to escape from local minima.

For problems dealing with few thousands of objects, it is possible to di-
rectly run the FDP algorithm with the whole set of data. For larger data
collections, it is often interesting to select a subset of objects to coarsely de-
fine the topology of the output space, in a first step. Remaining data are
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subsequently positioned with respect to preceding ones, by preferentially sat-
isfying local constraints. In our hands, the incremental approach shows up
very effective, especially when initial objects are selected after clustering.

2.3 Non-linear projection achieved by FDP-MDS: examples

Two boxes: Data to be projected have three dimensions. Objects are orga-
nized to represent 2 cubic boxes with an open side not pointing in the same
direction. Projection onto a 2D space with FDP-MDS correctly develops the
2 boxes and carries out a twist on a large scale (fig. 1). Relations of vicinity
are satisfactorily preserved.

4

3

2

1
0

100

200

0 1 2 3
distances in data space

d
is

ta
n

c
e

s
 i
n

 o
u

tp
u

t 
s
p

a
c
e0

0.5
1

1.5
2

2.5

3

3.5

Fig. 1. Mapping of 2 3D open boxes in a 2D space. Upper left: orig-
inal data (3D space), upper right: mapping (2D space), lower left, satis-
faction of constraints on objects (satisfaction increases from black to white,
LUT of fire), lower right, pairwise distances preservation (color codes for den-
sity of distances). NB: Colored figures are available from our WEB site
<http://e6.imed.jussieu.fr/afficherpub.php/ASMDA05.pdf>

Earth globe: Data to be projected are the big cities around the word
(3D). Projection accounts for local density of cities. The north hemisphere
is properly developed (Fig. 2). Cities-free areas are distorted although con-
tinuity is preserved in most places (The grid is not used during the mapping
construction).

2.4 Mapping high dimensional data: the genomic signature

issues

The data concerned with this study belong to two families; the signatures of
5000 species constitute a subset of the diversity of ADN molecules on earth.
The signature of a species, B. subtilis, is studied in detail. One thousand
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Fig. 2. Mapping of the earth globe (defined by the big cities) in a 2D space. Color
indicates satisfaction of pairwise distances for the corresponding city (Color scheme
is similar to Fig. 1).

eight hundred and twenty four signatures corresponding to the analysis of
B. subtilis genome through a sliding window of preset size (5000 nucleotides)
are calculated. The signature of each of these windows (called local signatures
thereafter) generally displays the characteristics of B. subtilis. All signatures
are defined by 256 frequency variables.

The first issue to be addressed in this work concerns the effect of sampling
on the mapping of high dimensional data. Five hundred local signatures of
B. subtilis are randomly selected to build a proximity preserving 2D output
space (Fig 3, left panel). The 1324 remaining signatures are subsequently
placed, using the FDP algorithm. It appears clearly that the mapping is not
suitable to handle the diversity of local signatures of B. subtilis. Most of the
signatures that were not considered for the mapping are concentrated around
the center of the space, whereas a randomly placement would be expected.
Obviously, pairwise distances between 500 local signatures are not enough to
properly describe the proximity characteristics of these highly dimensional
objects. New objects cannot fit in the output space. It must be pointed out
that this peculiar behavior is not observed for the 5000 genomic signatures
although their dimension is the same (result not shown). It is suggested
that the intrinsic dimension of signatures is the key to explain this surprising
result. Local signatures may stretch over most of the avaible dimensions
(sampling effect) whereas variations among genomic signatures only concern
specific directions characterizing the restricted set of possible pathways for
species differentiation.

Surprisingly, switching from the Euclidean metric to the rank pseudo-
metric solves the problem (Fig. 3, right panel)! It may be considered that
the mapping obtained using the rank pseudo-metric is robust to sampling
size, but additional experiments and theoretical developments are required
to firmly conclude on this point.

The second issue deals with classification. Local signatures are expected
similar to the genomic signature of the species they come from. It should be
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Fig. 3. Mapping of B. subtilis local signatures. Red crosses (500) are for signatures
used to construct the mapping, blue circles (1324) are for additional local signatures
placed afterwards.

subsequently possible to search for the species of origin of any local signature
of B. subtilis, using a nearest neighbor classifier exploring the 5000 genomic
signature set. Within the framework of this paper, 2 situations are consid-
ered: i) the mapping is learned using the species’ signatures, ii) the mapping
is learned with all available signatures, including B. subtilis’ local signatures.

In data space (256 dimensions), only 64% of local signatures are correctly
assigned to B. subtilis. In fact there are about one hundred of species in the
hyper-sphere holding 95% of local B. subtilis’ signatures, some of them being
even very close to B. subtilis. It should be noted that an important subset
of local signatures is misclassified for known biological reasons. When the
space of projection is learned from the species’ signatures, the rate of good
classification falls to 0,7%(fig. 4, left panel). It is 24% when the space of
projection is learned from the whole set of signatures (species and local, fig.
4, right panel). The zone devoted to local signatures in the output space
is extended to satisfy constraints of distances between local signatures when
they are included in the training sample. Even so, quality of classification
remains poor.

3 Discussion et conclusion

The nonlinear approach of mapping described in this article was designed
to preferentially preserve proximity. For small dimension problems, it ap-
pears that its effectiveness is quite good. It is unfortunately not the case for
high dimension data where the learning sample size seems to be a critical
parameter and the efficiency of local signature nearest neighbor classification
is strongly reduced in the output space. The method of classification used
in this work is particularly sensitive to “errors”of placement since only one
“mis-placed”species may cause multiple classification errors. However, this
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situation is likely to occur many times in such dramatic reductions of dimen-
sion (256 towards 2-3). Considering that the growth of neighborhood with
increasing radius (around every object) in a high dimensional space cannot
be effectively matched in a low dimensional space, only data with a small in-
trinsic dimension may be properly mapped in a small dimensional Euclidean
space.
An interesting alternative is proposed by H. Ritter and J. Walter [Ritter,
1999] [Walter and Ritter, 2002]: they use a 2-dimensional hyperbolic plane
as output to simulate the singular growth of neighborhood of high dimen-
sional space. The approach seems very promising. The learning sampling
size is also an important parameter to master. Obviously, the conjunction
of the empty space phenomenon with the singular growth of neighborhood
in high dimensional space make the sampling phase (when required) partic-
ularly tricky. All together, it seems useful to recall that the analysis of the
data resulting from consequent compression ratios must be carried out with
infinite precautions.

Fig. 4. mapping of genomic signatures in a small dimensional space: Species’ sig-
natures are in blue (dark), well-classified local B. subtilis’ signatures (in the data
space) are in yellow (light), mis-classified signatures are in red (see text). Left
panel: mapping obtained with species’ genomic signatures, right panel: mapping
obtained with the full set of available signatures (species and local).
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