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Abstract. We consider quadratic functionals of the multivariate uniform empirical
process. Making use of Karhunen-Loève expansions of the corresponding limiting
Gaussian processes, we obtain the asymptotic distributions of these statistics under
the assumption of independent marginals. Our results have direct applications
to tests of goodness of fit and tests of independence by Cramér-von Mises-type
statistics.

AMS 2000 classification: 60F05, 60F15, 60G15, 62G30.
Keywords: Cramér-von Mises tests, tests of goodness of fit, tests of indepen-
dence, weak laws, empirical processes, Karhunen-Lo‘eve decompositions, Gaussian
processes, Bessel functions.

1 Introduction and Premiminaries.

1.1 Introduction.

In this paper, we survey some recent results ([14, 15, 13]) related to quadratic
functionals of the form

∫ 1

0

. . .

∫ 1

0

t2β1

1 . . . t2βd

d α2
n,0(t1, . . . , td)dt1 . . . dtd, (1)

where αn,0 is an appropriate version of the uniform empirical process on [0, 1]d

(see (36) in the sequel for explicit definitions). We first establish conditions
on the β1, . . . , βd, under which the statistic in (1) converges to a quadratic
functional of a Gaussian process, of the form

∫ 1

0

. . .

∫ 1

0

t2β1

1 . . . t2βd

d B2
0(t1, . . . , td)dt1 . . . dtd, (2)

with B0 denoting a tied-down Brownian bridge. Second, we will characterize
the distribution of the random variable in (2), through a Karhunen-Loève
expansion of the corresponding weighted Gaussian process.

This problem has been initiated by Cramér [10] (see, e.g., Nikitin [26], Scott
[32] and the references therein). In higher dimensions, we refer to Blum,
Kiefer and Rosenblatt [6], Cotterill and Csörgő [8, 9], Deheuvels [13], Dugué
[17, 18, 19], Hoeffding [20], Kiefer [24], Martynov [27], and Smirnov [33, 35,
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34]. Quadratic functionals of Gaussian processes have been studied by Biane
and Yor [5], Donati-Martin and Yor [16], Pitman and Yor [28, 29, 30, 31],
and Yor [37, 38]. The results of Deheuvels and Martynov [14], and Deheuvels,
Peccati and Yor [15], Deheuvels [13], give the core of the present survey paper.
The theory of Bessel functions plays here an essential role and we refer to
Bowman [7] and Watson [36] for details.

In §1.2 and 1.3, we give some preliminaries. We describe the univariate case
in §2.1 and the multivariate case, with d ≥ 2, in §2.2.

1.2 Some Preliminaries on Gaussian Processes.

Let {X(t) : t ∈ [0, 1]d} denote a centered Gaussian process, with d ≥ 1. We
set s = (s1, . . . , sd) ∈ R

d and t = (t1, . . . , td) ∈ R
d, and set

R(s, t) = E
(
X(s)X(t)

)
for s, t ∈ [0, 1]d. (3)

We will are concerned with the quadratic functional

∫

[0,1]d
X2(t)dt, (4)

where dt is the Lebesgue measure. We will work under the assumption that

0 < E

(∫

[0,1]d
X2(t)dt

)
=

∫

[0,1]d
R(t, t)dt < ∞. (5)

The condition (5) entails that, almost surely, X(·) ∈ L2
(
[0, 1]

)
belongs to

the class of Hilbert space valued centered Gaussian processes (see, e.g., §10 in
Lifshits [25]). By the Cauchy-Schwarz inequality, for each s, t ∈ [0, 1]d,

R(s, t)2 = E
(
X(s)X(t)

)2 ≤ E
(
X(s)2

)
E
(
X(t)2

)
= R(s, s)R(t, t).

When combining this last inequality with (5), we obtain that

‖R‖2
L2 :=

∫

[0,1]d

∫

[0,1]d
R(s, t)2dsdt ≤

{∫

[0,1]d
R(t, t)dt

}2

< ∞, (6)

so that R ∈ L2
(
[0, 1]d × [0, 1]d

)
. Under (6), the Fredholm transformation

y(·) ∈ L2
(
[0, 1]d

)
→ ỹ(·), defined by

ỹ(t) =

∫

[0,1]d
R(s, t)y(s)ds for t ∈ [0, 1]d, (7)

is a continuous linear mapping of L2
(
[0, 1]d

)
onto itself. The condition (6)

also implies the existence of a convergent orthonormal sequence [c.o.n.s.],
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{λk, ek(·) : 1 ≤ k < K} with the following properties. {λk : 1 ≤ k < K} are
positive constants and K ∈ {2, . . . ,∞} a possibly infinite index, with

λ1 ≥ . . . ≥ λk ≥ . . . > 0. (8)

The {ek(·) : 1 ≤ k < K} are orthonormal in L2
(
[0, 1]

)
, and fulfill

∫

[0,1]d
ek(t)e`(t)dt =

{
1 if k = `,

0 if k 6= `.

The function R may be decomposed into the series

R(s, t) =
∑

1≤k<K

λkek(s)ek(t), (9)

convergent in L2
(
[0, 1]d

)
. This entails that

‖R‖L2 =

∫

[0,1]d

∫

[0,1]d
R(s, t)2dsdt =

∑

1≤k<K

λ2
k < ∞. (10)

The λk (resp. ek(·)) are the eigenvalues (resp. eigenfunctions) of the Fred-
holm operator (7), and fulfill the relations, for each 1 ≤ k < K,

ẽk(t) =

∫

[0,1]d
R(s, t)ek(s)ds = λkek(t). (11)

The Karhunen-Loève [KL] decomposition of X(·), (see, e.g., Kac and Siegert
[23, 22], Kac [21], Ash and Gardner [4], and Adler [2]) decomposes X(·) into

X(t) =
∑

1≤k<K

Yk

√
λk ek(t), (12)

where {Yk : 1 ≤ k < K} are independent and identically distributed [i.i.d.]
normal N(0, 1) random variables. Under (5), the series in (12) is convergent
in mean square, since this condition is equivalent to

0 < E

( ∫

[0,1]d
X2(t)dt

)
=

∑

1≤k<K

λk < ∞. (13)

This, in turn, readily implies that, as k ↑ K with k < K,

E

( ∫

[0,1]d

{
X(t) −

k∑

m=1

Ym

√
λm em(t)

}2

dt
)

=
∑

m>k

λk → 0.

The condition (5)–(13) is strictly stronger than (10). It implies that the
quadratic functional (4) can be decomposed into the sum of the series

∫

[0,1]d
X2(t)dt =

∑

1≤k<K

λkY 2
k . (14)

The latter is almost surely convergent if and only if (5) holds. Therefore, we
will assume, from now on, that this condition is satisfied.
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1.3 A General Convergence Theorem.

With R(·, ·) as in (3), we consider independent replicæ ξ1(·), ξ(2), . . . of a
general stochastic process ξ(·), fulfilling (H.1–2–3) below.

(H.1) ξ(·) ∈ L2
(
[0, 1]d

)
;

(H.2) E
(
ξ(t)

)
= 0 for all t ∈ [0, 1]d;

(H.3) E
(
ξ(s)ξ(t)

)
= R(s, t) for all s, t ∈ [0, 1]d.

Under (H.1–2–3) (see, e.g., Ex. 14, p. 205 in Araujo and Giné [3]), as n → ∞,
the convergence in distribution

ζn(·) := n−1/2
n∑

i=1

ξi(·) d→ X(·), (15)

holds if and only if (5)–(13)) is satisfied, namely, when
∫

[0,1]d
E
(
ξ2(t)

)
dt =

∫

[0,1]d
R(t, t)dt < ∞.

We have therefore the following theorem.

Theorem 1 Under (5) and (H.1–2–3), we have, as n → ∞, the convergence

in distribution ∫

[0,1]d
ζ2
n(t)dt

d→
∑

1≤k<K

λkY 2
k . (16)

Proof. Under (5) (or equivalently (13)), it follows from (15) that
∫

[0,1]d
ζ2
n(t)dt

d→
∫

[0,1]d
X2(t)dt,

which, in turn, reduces (16) to a direct consequence of (15).2

Below, we provide some useful statistical applications of Theorem 1.

2 Weighted Empirical Processes.

2.1 The Univariate Case (d = 1).

Let U1, U2, . . . be i.i.d. uniform [0, 1] random variables. For n ≥ 1, set

Fn(t) =
1

n

n∑

i=1

1I{Un≤t}, (17)

for the empirical distribution function [df] based upon U1, . . . , Un, and let

αn(t) = n1/2
{
Fn(t) − t

}
for t ∈ [0, 1], (18)
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denote the uniform empirical process. Fix β ∈ R, and set, for n ≥ 1,

ξn(t) = tβ
{
1I{Un≤t} − t

}
for t ∈ [0, 1]. (19)

We let t0 = 1 for all t ∈ R, when β = 0. In agreement with (15), (18), (19),
and the notation of §1.3, we may write

ζn(t) = n−1/2
n∑

i=1

ξi(t) = tβαn(t) for t ∈ [0, 1]. (20)

The assumptions (H.1–2–3) in §1.3 are fulfilled with R defined by

R(s, t) = sβtβ
{
s ∧ t − st

}
for s, t ∈ [0, 1]. (21)

For this choice of R, (5)–(13) hold if and only if

∫ 1

0

t2β
{
t(1 − t)

}
dt < ∞, (22)

which is equivalent to β > −1. Now, since s∧t−st is the covariance function
of a standard Brownian bridge {B(t) : t ∈ [0, 1]}, the kernel R in (21) is
nothing else but the covariance function of the weighted Brownian bridge

X(t) = tβB(t) for t ∈ (0, 1]. (23)

Deheuvels and Martynov [14] have given the KL decomposition of X(·) in
(23) when β 6= −1 ⇔ ν = 1/(2(1 + β)) > 0. For ν ∈ R, we the first Bessel
function (see, e.g.,§9.1.69 in Abaramowitz and Stegun [1]) is

Jν(x) = (1
2x)ν

∞∑

k=0

(− 1
4x2)k

Γ (ν + k + 1)Γ (k + 1)
. (24)

Whenever ν > −1, the positive zeros of Jν are isolated and form an infinite
increasing sequence {zν,k : k ≥ 1}, such that (see, e.g., Watson [36])

0 < zν,1 < zν,2 < . . . , (25)

and, as k → ∞,

zν,k =
{
k + 1

2 (ν − 1
2 )

}
+ o(1). (26)

Given this notation, Theorem 1.4 in [14] asserts that, whnever β > −1, the
KL representation of X(t) = tβB(t) is given by

X(t) = tβB(t) =

∞∑

k=1

Yk

√
λk ek(t), (27)
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where {Yk : k ≥ 1} are i.i.d. normal N(0, 1) random variables,

λk =
{ 2ν

zν,k

}2

, k = 1, 2, . . . , (28)

and

ek(t) = t
1

2ν
− 1

2

{ Jν(zν,kt
1

2ν )√
ν Jν−1(zν,k)

}
for 0 < t ≤ 1. (29)

Refer to Deheuvels and Martynov [14] for details. We get the theorem:

Theorem 2 For any β > −1, setting ν = 1/(2(1+β)), we have, as n → ∞,

the convergence in distribution

∫ 1

0

t2βα2
n(t)dt

d→
∫ 1

0

t2βB2(t)dt =

∞∑

k=1

{ 2ν

zν,k

}2

Y 2
k , (30)

where {Yk : k ≥ 1} is an i.i.d. sequence of normal N(0, 1) random variables.

Proof. In view of (28)–(29), it is a direct consequence of Theorem 1.2

2.2 The Multivariate Case (d ≥ 2).

We now let d ≥ 2. When s = (s1, . . . , sd) ∈ R
d and t = (t1, . . . , td) ∈ R

d, we
denote by s ≤ t the fact that sj ≤ tj for j = 1, . . . , k, and set, accordingly,

s ∧ t =
(
s1 ∧ t1, . . . , sd ∧ td

)
.

Letting U = (U(1), . . . , U(d)) ∈ [0, 1]d be uniformly distributed on [0, 1]d, we
let Un = (Un(1), . . . , Un(d)) ∈ [0, 1]d, n = 1, 2, . . . be i.i.d. replicæ of U. For
each n ≥ 1, the empirical df based upon U1, . . . ,Un is denoted by

Fn(t) =
1

n

n∑

i=1

1I{Ui≤t}, (31)

We denote by

F (t) = P
(
U ≤ t

)
=

d∏

j=1

tj , (32)

the (exact) distribution function of U, and set

αn(t) = n1/2
(
Fn(t) − F (t)

)
for t ∈ [0, 1]d, (33)

for the corresponding uniform empirical process. Making use of §1.3, we
obtain that the following convergence in distribution holds. As n → ∞,

αn(·) d→ B(·), (34)
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where {B(t) : t ∈ [0, 1]d} is a standard multivariate Brownian bridge. Namely,
B(·) is a centered Gaussian process, with covariance function

E
(
B(s)B(t)

)
= E

(
αn(s)αn(t)

)

=

d∏

j=1

{
sj ∧ tj

}
−

d∏

j=1

{
sjtj

}
. (35)

The KL decomposition of B(·), with covariance function as in (35), is not
known explicitly for d ≥ 2. A more tractable tied-down empirical process
αn,0(·) is as follows. Set

αn,0(t) = αn(t) −
∑

1≤j≤d

tj αn(t1, . . . , tj−1, 1, tj+1, . . . , td)

+
d∑

1≤j<`≤d

tjt` αn(t1, . . . , tj−1, 1, tj+1, . . . , t`−1, 1, t`+1, . . . , td)

+ . . . + (1)dt1 . . . td αn(1, . . . , 1). (36)

In (36), αn(1, . . . , 1) = 0, but this term is stated for convenience. In view of
§1.3, we obtain the following convergence in distribution. As n → ∞,

αn,0(·) d→ B0(·), (37)

where {B0(t) : t ∈ [0, 1]d} is a tied-down multivariate Brownian bridge.
Namely, B0(·) is a centered Gaussian process, with covariance function

E
(
B0(s)B0(t)

)
=

d∏

j=1

{
sj ∧ tj − sjtj

}
. (38)

We have the following easy consequence of the results of Deheuvels and Mar-
tynov [14] (see also Deheuvels, Peccati and Yor [15]).

Theorem 3 Let β1, . . . , βd be constants such that βj > −1 for j = 1, . . . , d.
Set νj = 1/(2(1 + βj)) > 0 for j = 1, . . . , d. Then, the Karhunen-Loève

decomposition of the centered Gaussian process

X(t) = tβ1

1 . . . tβd

d B0(t) for t ∈ (0, 1]d, (39)

is given by

X(t) =
∞∑

k1=1

. . .
∞∑

kd=1

√
λk1,...,kd

Yk1,...,kd
ek1,...,kd

(t), (40)
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where

λk1,...,kd
=

d∏

j=1

{ 2νj

zνj ,kj

}2

=:

d∏

j=1

L(νj , kj), (41)

and

ek1,...,kd
(t) =

d∏

j=1

[
t

1

2νj
− 1

2

j

{
Jνj

(zνj ,k t
1

2νj

j )
√

νj Jνj−1(zνj ,k)

}]

=:

d∏

j=1

E(νj , tj). (42)

Proof. By (38) the covariance function of X(t) in (39) is given by

R(s, t) =

d∏

j=1

s
βj

j t
βj

j

{
sj ∧ tj − sjtj

}
=:

d∏

j=1

R(sj , tj). (43)

Therefore, via (28)–(29), λk1,...,kd
is an eigenvalue of the Fredholm operator

(7) pertaining to ek1,...,kd
(·). To conclude, we show that all eigenvalues are

so obtained. For this, we combine (10) with (43), to write that

∫

[0,1]d

∫

[0,1]d
R(s, t)2dsdt =

∞∏

j1=1

. . .

∞∏

jd=1

∫ 1

0

∫ 1

0

R(sj , tj)
2dsjdtj

=

∞∏

j1=1

. . .

∞∏

jd=1

{ ∞∑

kj=1

L(νj , kj)
2
}

=

∞∑

k1=1

. . .

∞∑

kd=1

λ2
k1,...,kd

.

This shows that there is no other remaining eigenvalue of (7).2

The next theorem is an easy consequence of the preceding results.

Theorem 4 Let β1, . . . , βd be constants such that βj > −1 for j = 1, . . . , d.
Set νj = 1/(2(1 + βj)) > 0 for j = 1, . . . , d. Then, we have, as n → ∞,

∫

[0,1]d
t2β1

1 . . . t2βd

d α2
n,0(t)dt

d→
∫

[0,1]d
t2β1

1 . . . t2βd

d B2
0(t)dt

=

∞∑

k1=1

. . .

∞∑

kd=1

{ d∏

j=1

{ 2νj

zνj,kj

}2}
Y 2

k1,...,kd
, (44)

where {Yk1,...,kd
: k1 ≥ 1, . . . , kd ≥ 1} is an i.i.d. array of normal N(0, 1)

random variables.

The limiting distribution in Theorem 4 coincides with that of the Blum-
Kiefer-Rosenblatt statistic (see, e.g., [6]), when d = 2 and β1 = . . . = βd = 0.
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Conclusion. For d ≥ 2, the eigenvalues λk1,...,kd
in the KL decomposition

(41)–(42) are multiple. This renders the numerical computation of the limit
distribution of the test statistic in (44) more delicate than in the univariate
case. This problem will be investigated elsewhere.
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9.Cotterill, D. S. and Csörgő, M. (1985). On the limiting distribution and criti-
cal values for the Hoeffding, Blum, Kiefer, Rosenblatt independence criterion.
Statist. Decisions. 3 1-48.
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