
Parametrised measures for the evaluation of

association rules interestingness
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Abstract. In this paper, we present a original and synthetical overview of most
commonly used association rule interestingness measures. These measure usually
relate the confidence of a rule to an independency reference situation. Others relate
it to indetermination, or impose a minimum confidence threshold. We propose a
systematic generalisation of these measures, taking into account the reference point
choosen by an expert in order to apprehend the confidence of a rule. This general-
isation introduces new connections between measures, leads to the enhancement of
some of them, and we propose new parametrised possibilities.
Keywords: interestingness measure, independency, indetermination.

1 Motivations

In this paper, we focus on the generalisating objective interestingness mea-
sures. We will consider association rule intersetingness measures, which
aim at quantifying the quality of rules extracted from binary transactional
datasets. In such datasets, each row is representing an object of the data
mined, and consists of binary attributes, relating each object with properties
that it may have or not. In this context, an association rule is an implication
A → B, where A and B (also called itemsets) are conjunctions of attributes.
We denote by n the total number of transactions in the database, na (resp.
nb, nab, nab̄) the number of transactions matching A (resp. B, A and B, A
but not B), and by pa (resp. pb, pab, pab̄) the corresponding relative frequen-
cies. Most objective measures are expressed as real valued functions of n,
of the marginal frequencies pa, pb, and either pab or pab̄, i.e. as functions
of n, and of the confidence (Conf) pab/pa and marginal frequency counts of
the considered rule since pab̄ =pa-pab. The higher the value of the measure,
the better the rule is expected to be. Considering that the more counter-
examples to a rule there are, the worst it is, we restrict our set of measures
to those decreasing with pab̄ (see table 1, references may be found in [Lenca
et al., 2004]). For a larger list of measures the reader should refer to [Guillet,
2004].

Support (Sup) and confidence (Conf) are the most famous of such mea-
sures, being the fundamentals principles of Apriori-like algorithms [Agrawal
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and Srikant, 1994]. These algorithms extract rules such that their Sup and
Conf is above given thresholds, σs and σc. They are deterministic [Freitas,
2000], and produce a large number of rules which may not be interessting:

• one would expect from a rule that its Conf should be above a reference
value, but the later seldom if ever equals σc. Two main references are
clearly identified as worthy from a user point of view. The first one is pb,
which corresponds to the independence of the itemsets A and B. In this
case the user wishes to focus on rules such that the prior knowledge of
A increases the knowledge of B, i.e. rules having a confidence pb/a above
the a priori frequency pb. An alternative reference sometimes used is 0.5,
as in [Blanchard et al., 2005]. In our opinion, the first reference is to be
taken within a targeting strategy, and the second one when considering
a predictive strategy. More generally, a user may be interested in taking
into account a reference value θ, 0 < σc ≤ θ ≤ 1, and will consider only
rules having a Conf greater than θ. Fukuda Gain (Fuku) is an example
of such a measure, where θ = σc.

• what is more, the data mined is often subject to some sampling scheme.
In order to take that into account, a special kind of measures have been
proposed. They are called “statistical” in the sense that, unlike the others
(also called “descriptive” measures), their value rises with n, the relative
frequencies being fixed. This consideration accounts for developping an
inferential approach, and retaining only rules that are significantly well
evaluated by measures, comparison to the reference choosen. Amongst
the issues that arise from this approach, validating a large number of
rules through the control of false rules discovery is assessed in [Lallich et

al., 2004].

Various properties of interestingness measures have been investigated,
in particular in [Piatetsky-Shapiro, 1991], [Hilderman and Hamilton, 1999],
[Freitas, 1999], [Lallich, 2002], [Lallich and Teytaud, 2004], [Gras et al., 2004]
and [Lenca et al., 2004]. One of these properties deals with the reference value
to which the measure compares confidence, that is to say pb (independency),
0.5 (indetermination), or some other value.

In this paper, we present a general survey of association rule interesting-
ness measures and parametrise the reference value to which the measures will
compare the confidence of a rule in order to estimate its quality. Such a con-
sideration leads to an organised review of classical measures, the introduction
of new ones, and enables us to enhance the coherence of some of them. We
will first focus on descriptive measures, and then look at the statistical ones.

2 Descriptives measures

2.1 Reference to independency

Amongst frequently used measures added to Sup and Conf in order to cap-
ture the interestingness of a rule, are those taking the independence of the
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Authors Relative definitions
Sup (Agrawal and Srikant, 1994) pab

Conf (Agrawal and Srikant, 1994) pb/a

r (Pearson, 1896)
pab−papb√

papāpbp
b̄

CenConf pb/a − pb

PS (Piatetsky-Shapiro, 1991) npa

`

pb/a − pb

´

= npapb (Lift − 1)

Loe (Loevinger, 1947)
pb/a−pb

p
b̄

= 1

p
b̄
CenConf = 1 − 1

Conv

- ImpInd (Lerman et al., 1981)
√

n
p

ab̄
−pap

b̄√
pap

b̄

Lift (Brin et al., 1997)
pb/a

pb

LC (Azé and Kodratoff, 2002)
pab−p

ab̄
pb

= 2 pa
pb

(Conf − 0.5)

Seb (Sebag and Schoenauer, 1988)
pab
p

ab̄
= Conf

1−Conf

OM (Jeffreys, 1935)
pb/a/p

b̄/a
pb/p

b̄
=

pab
pb

p
b̄

p
ab̄

= Lift · Conv

Conv (Brin et al., 1997)
pap

b̄
p

ab̄
ECR 1 − pab̄/pab = 1 − 1/Seb
IG (Church and Hanks, 1990) log

pab
papb

= log (Lift)

IntImp (Gras et al., 1996) P [Poi (npapb̄) ≥ npab̄]

EII (Gras et al., 2001)
˘

[(1 − h1(pab)
2)(1 − h2(pab)

2)]1/4ϕ
¯

1/2

PDI (Lerman and Azé, 2003) P
h

N (0, 1) > ImpInd
RC/B

i

Fuku (Fukuda et al., 1996) npa

`

pb/a − σc

´

Gan (Ganascia, 1988) 2pb/a − 1

• h1(t) = −(1 − t
pa

) log2(1 − t
pa

) − t
pa

log2(
t

pa
) if t ∈ [0, pa/2[; else h1(t) = 1

• h2(t) = −(1 − t
pb̄

) log2(1 − t
pb̄

) − t
pb̄

log2(
t

pb̄
) if t ∈ [0, pb̄/2[; else h2(t) = 1

• Poi stands for Poisson and N (0, 1) for the standard normal distribution

• ImpInd
CR/B corresponds to ImpInd, centred reduced (CR) for a rule set B

Table 1. List of measures

itemsets A and B as reference. This is the case of many linear transformation
of Conf: the centered confidence (CenConf), Piatetsky-Shapiro (PS), Lo-
evinger (Loe), the implication index (ImpInd), and the lift (Lift). All these
measures additively centre confidence on pb from pb/a−pb, save Lift for which

the centring is multiplicative and based on
pb/a

pb
. Other monotonically increas-

ing transformations of confidence making reference to independency are the
odd multiplier (OM = 1−pb

pb
× Conf

1−Conf ), the conviction (Conv = 1−pb

1−Conf ),

whereas the information gain (IG = log Lift) is a transformation of Lift.

2.2 Reference to indetermination

Some measures may (explicitly or not) refer to the indetermination situation,
when the number of examples and counter-examples is balanced for a given
na [Blanchard et al., 2005]. This is the case of Conf and the two linear trans-
formation: least confidence (LC = 2 × (pb/a − 0.5) × pa

pb
) and the Ganascia

measure (Gan = 2 × (Conf − 0.5)) that both additively centre Conf at
0.5. Other transformations can be listed, in particular the Sebag and Shoe-
nauer measure (Seb = Conf

1−Conf ) and the examples and counter-examples rate

(ECR = 2×(Conf−0.5)
Conf ).
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2.3 Reference at θ

In order to generalise the expression of interestingness measures with respect
to θ, i.e. rules such that 1 ≥ Conf(A → B) ≥ θ(A → B), we will alternatively
consider the quantities Conf − θ, Conf

θ and Conf−θ
1−θ . Descriptive interesting-

ness measures are generalised as follows:
CenConf |θ = Conf − θ

Gan|θ = Conf−θ
1−θ = Loe|θ = 1

1−θ CenConf |θ
Fuku|θ = PS|θ = npa (Conf − θ)

Lift|θ = Conf
θ

IG|θ = log(Lift|θ)

Conv|θ = 1−θ
1−Conf

OM |θ = Seb|θ = Conf
θ × 1−θ

1−Conf = Lift|θ × Conv|θ
LC|θ = Conf−θ

1−θ × pa

pb
= Loe|θ ×

pa

pb

Some measures in table 1 are particular instances of several generalised ex-
pression:

OM |θ=pb
= Seb|θ=0.5, Gan|θ=0.5 = Loe|θ=pb

, Fuku|θ=σc
= PS|θ=pb

3 Statistical measures

3.1 Intrinsics of statistic and probabilistic measures

As mentioned previously, a statistic measure takes into account the size of
the sampling scheme. It is qualified of “probabilistic” when expressed as the
complement of the p-value of the test under pb/a ≤ pb hypothesis. Classical
approaches use the independence of itemsets A and B hypothesis as reference.
The modelling of this hypothesis realised in [Lerman et al., 1981] can be
done in three different ways, with respectively 1, 2 and 3 hazard levels. We
introduce model 1′ which is an alternative to model 1 where pa is fixed, rather
than na (table 2).

We denote by Nab the random variable generating nab, and H and B re-
fer respectively to the hypergeometric and binomial laws. The statistic and
probabilistic index based on nab̄ are built as follows: by establishing the law
of Nab et Nab under null hypothesis (H0) following the choosen modelling,
we can express a centered and reduced index under H0, noted NCR

ab
. Under

standard conditions, the law of this index can be approximated to the nor-
mal distribution, leading to the definition of a probabilistic measure, defined
as the surprise of observing such a high value of the index under H0. The
choosen modelling does not affect the expectation, but does modify the vari-
ance. [Gras, 1979] and [Lerman et al., 1981] prefer the third modelling, that
dissociates most rules A → B and B → A whereas the first modelling makes no
dinstinction between these rules. The measure hence obtained is the impli-
cation intensity (IntImp), which is most satisfying on properties one expects
a measure should have [Lenca et al., 2004], [Gras et al., 2004].
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Modelling 1 and 1′ Modelling 2 Modelling 3

Principle

1.1 na fixed,
Nab randomised
1.1’ pa fixed
Nab randomised

2.1 Na≡ B(n, pa)
2.2 /Na= na,
Nab≡ B(na, pb)

3.1 N ≡ P (n)
3.2/N = n,
Na≡ B(n, pa)
3.3 /N = n, Na= na ,
Nab≡ B(na, pb)

Law Nab

under H0

1.1 H(n, na, pb)
1.1’ B(na, pb)

B(n, papb) Poi(npapb)

Law Nab

under H0

1.1 H(n, na, pb)
1.1’ B(na, pb)

B(n, papb) Poi(npapb)

Statistical
index
NCR

ab

1.1
N

ab
−npap

b√
npapapbp

b

= −r
√

n

1.1’
N

ab
−npap

b√
npapbp

b

N
ab

−npap
b

q

npap
b(1−pap

b)

IndImp
N

ab
−npap

b√
npap

b

Probabilistic
index
P (N(0, 1) > NCR

ab
)

1.1 P (N(0, 1) < r)
IntImp

P (N(0, 1) > IndImp)

Table 2. Modelling of the various statistical and probabilistic index

3.2 Retaining the discriminating power

Although having many good properties, one of the major drawbacks of
IntImp (drawback shared by the other statistic and probabilistic measures)
is the loss of discriminating power. By its definition, it will evaluate rules
significantly different from independency between 0.95 and 1. If n becomes
important, which is particularly true in a data mining context, the slightest
divergence from an independency situation becomes highly significant, thus
leading to high and homogeneous values of the measure, close to 1.

In order to counter-balance this loss in discriminating power, [Lerman and
Azé, 2003] introduce a contextual approach where ImpInd is centered and
reduced (CR notation) on a case database B, thus leading to the definition

of the probabilistic discriminant index, PDI = P
[
N(0, 1) > ImpIndCR/B

]
.

[Gras et al., 2001] propose an alternative solution by wheighting IntImp

through the use of an inclusion index. This index is based on the entropy
of experiments B/A and A/B. We denote by H(X) = px log2 px + px log2 px

the entropy associated with an event X . In [Blanchard et al., 2004] the most
general form of the inclusion index is given as:

i(A ⊂ B) =
[
(1 − H∗(B/A)α)

(
1 − H∗(A/B)α

)] 1

2α

where H∗(X) = H(X) if px > 0.5, H∗(X) = 1 otherwise. The α parameter
is choosen by the user. The value α = 2 is advised if one wants that this
index should be tolerant to initial counter-examples, and we will use this
value from now on. Hence, [Gras et al., 2001] define the entropic intensity of

implication as EII = [IntImp · i(A ⊂ B)]
1

2

The shift from H(X) to H∗(X) aims at discarding uninteresting situa-
tions, such as pb/a < 0.5 or pa/b < 0.5, and complies with a predictive strat-
egy. In a targeting strategy, the value of pb/a should have been compared to
pb, and the value of pa/b to pa.
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The wheighting of the implication of intensity by the inclusion index,
although effective, is problematic. The inclusion index is a measure of the
distance to indetermination based on entropy, thus being null when pb/a =
0.5, and so is EII. Still, IntImp values 0.5 at independency. Hence EII is

not always null at independency: EII = 8

√
(1−H(A)2)(1−H(B)2)

16 if pa < 0.5

and pb > 0.5, and is null otherwise.

3.3 Revised entropic intensity of implication

We will now propose two adaptations if EII in order to cope with the above
mentioned issues: REII (Revised EII) et TEII (Troncated EII). Our first
proposal consists in replacing IntImp by IntImp∗ = max{2IntImp − 1; 0}
in EII. This will solve the issues pointed out, but has the inconvenient of
modifying the entire spectrum of values taken by EII:

REII = [IntImp∗ · i(A ⊂ B)]
1

2

Our second proposal solely nullifies the values of EII when nanb̄

n ≤ nab ≤
min{na

2 , nb̄

2 }, whithout modifying its values otherwise. To achieve this, we
introduce an adequate version of H(X). In order to take into account both
predictive and targeting strategies, a rule will have a null evaluation by the
inclusion index, and hence by TEII when the following conditions are jointly
met:

• pb/a > 0.5 (prediction) and pb/a > pb (targeting); i.e. pb/a > max(0.5, pb)
• pa/b > 0.5 (prediction) and pa/b > pa (targeting); i.e. pa/b > max(0.5, pa)

With these new conditions, TEII is null whenever the num-
ber of counter-examples is above min

(nanb̄

n ; na

2 ; nb̄

2

)
. TEII =

[IntImp(A → B) × it(A ⊂ B)]
1

2 , with:

• it(A ⊂ B) =
[
(1 − H∗

t (B/A)α)
(
1 − H∗

t (A/B)α
)] 1

2α ,
• H∗

t (B/A) = H(B/A) if pb/a > max(0.5, pb), H∗
t (B/A) = 1 otherwise,

• H∗
t (A/B) = H(A/B) if pa/b > max(0.5, pa), H∗

t (A/B) = 1 otherwise.

3.4 Measures making reference to indetermination

[Blanchard et al., 2005] propose IPEE, a probabilistic measure of deviation
from equilibrium. The authors implicitly use modelling 1′ since they consider

Nab ≡ B(na, 0.5) under indetermination hypothesis, i.e. NCR
ab

=
Nab−0.5na

0.5
√

na
.

They introduce IPEE = P
[
B(na, 0.5) > nab

]
≈ P

[
N(0, 1) >

nab−0.5na

0.5
√

na

]
.

Under normal approximation, IPEE equals 0.5 at indetermination. This
measure corresponds to the probalistic index associated to modelling 1′ (see
table 2), where pb is replaced by 0.5. IPEE will hence inherit of the weak
discriminating power of this kind of measures, thus leading the authors to
propose that it should be modulated by the inclusion index, which is all the
most coherent, since both index make reference to indetermination.
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3.5 Generalised intensity of implication

Using the same approach as with descriptive measures, we can generalise
statistical measures and evaluate the interestingness of a rule by comparing
its Conf to θ. This is done by considering in table 2 that for each modelling
under H0, the probability of an example, conditionally to na, of an example
is θ: Nab ≡ B(na, θ).

The results of the hence adapted modelling 1 is immediate, and those
of modelling 2 and 3 are easily obtained through the use of the probability
generating functions. If X ≡ B(m, p), its generating function then is G(s) =
E(sX) = (1 − p + ps)m, and if X ≡ Poi(λ), it is G(s) = E(sX) = e−λ(1−s).

• In modelling 2, n is fixed, Na ≡ B(n, pa) and Nab/(Na = na) ≡ B(na, θ).
Since GNab

(s) = E(sNab) = E(E(sNab/Na)) = E
(
(1 − θ + θs)Na

)
, we

have:
Nab ≡ B(n, θpa) and Nab̄ ≡ B(n, (1 − θ)pa)

• In modelling 3, we have N ≡ Poi(n), Na/(N = n) ≡ B(n, pa), and
Na/(N = n and Na = na) ≡ B(na, θ).
As GNa(s) = E(sNa) = E(E(sNa/N)) = E((1−pa+pas)

N ) = e−npa(1−s),
then Na ≡ Poi(npa).
Similarly, since GNab

(s) = E(sNab) = E(E(sNab/Na)) = E((1 − θ +
θs)Na) = e−nθpa(1−s), we have:

Nab ≡ Poi(nθpa) and Nab ≡ Poi(n(1 − θ)pa)

From these results, we propose a range of generalised measures (see ta-
ble 1), and will focus on two of them. The first one, GIPE|θ, associated to
modelling 1′ and generalises IPEE. It corresponds to the χ2 adjustment of
B/A distribution and (θ; 1 − θ). The second one, GIntImp|θ, associated to
modelling 3 generalises IntImp.

Modelling 1 and 1′ Modelling 2 Modelling 3

Principle

1.1 na fixed,
Nab randomised
1.1’ pa fixed,
Nab randomised

2.1 Na≡ B(n, pa)
2.2 /Na= na,
Nab ≡ B(na, θ)

3.1 N ≡ Poi(n)
3.2/N = n,
Na≡ B(n, pa)
3.3 /N = n, Na= na,
Nab≡ B(na, θ)

Law Nab
1.1 H(n, na, θ)
1.1’ B(na, θ)

B(n, θpa) Poi(npaθ)

Law Nab

1.1 H(n, na, 1 − θ)
1.1’ B(na, 1 − θ)

B(n, (1 − θ)pa) Poi(npa(1 − θ))

Statistical
index

NCR
ab

1.1
N

ab
−npa(1−θ)√

npapaθ(1−θ)

1.1’
N

ab
−npa(1−θ)√

npaθ(1−θ)

N
ab

−npa(1−θ)√
npa(1−θ)(1−pa(1−θ))

GIndImp|θ
N

ab
−npa(1−θ)√
npa(1−θ)

Probabilistic
index
P (N(0, 1) > NCR

ab
)

1.1’ GIPE|θ
GIntImp|θ =

P (N(0, 1) > GIndImp|θ)

Table 3. Modelling of the various generalised index
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3.6 Discriminant power of the generalised measures

The generalised statistical or probabilistic measures have, as the original ones
do, a weak discriminating power. In order to enhance these measures, we will
consider two approaches, one being contextual, like [Lerman and Azé, 2003],
the other one relying on a weighting through the use of an inclusion index,
like [Gras et al., 2001].

In the contextual approach, GIndImp |θ (or its equivalent following mod-
elling 1 and 2) is centred and reduced on a case database B, and thus define
a generalised probabilistic discriminant index, GIPD |θ, as follows.

GIPD|θ = P
(
N(0, 1) > GIndImp

CR/B
|θ

)

This way, we also define the generalised entropic intensity of implication,
GEII|θ, as the product of GIndImp|θ and an inclusion index. In order to
remain coherent, we think advisable to use a generalised inclusion index i|θ,
using θ as reference value and not 0.5. This can be achieved by replacing in
the original formula H(B/A) by H̃|θ(B/A) and H(A/B) by H̃|θ(A/B) where:

• H̃|θ(B/A) is expressed as H(B/A), in which we replace pb/a by p̃b/a

defined as follows:

p̃b/a =
pb/a

2θ
if pb/a ≤ θ, p̃b/a =

pb/a + 1 − 2θ

2(1 − θ)
otherwise

• H̃|θ(A/B) can be expressed either:

– by considering θ as reference, in which case we form H̃|θ(A/B) as we

did for H̃|θ(B/A), by replacing pa/b by p̃a/b in H(A/B), with:

p̃a/b =
pa/b

2θ
if pa/b ≤ θ, p̃a/b =

pa/b + 1 − 2θ

2(1 − θ)
otherwise

This first possibility generalises the inclusion index proposed in [Gras
et al., 2001], and can be found back using θ = 0.5.

– or using 1− pa

pb
× (1− θ) as reference, since pa/b = 1− pa

pb
× (1−pb/a).

In this case, when considering independancy (i.e. θ = pb), the refer-

ence value for H̃|θ(A/B) is pa.

H̃∗
|θ(B/A) and H̃∗

|θ(A/B), are defined as:

H̃∗
|θ(X) = H̃|θ(X) if px > θ, H̃∗

|θ(X) = 1 otherwise

and i|θ as:

i|θ =
[(

1 − H̃∗
|θ(B/A)α

) (
1 − H̃∗

|θ(A/B)α
)] 1

2α

, with α = 2.
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From this, we deduce GEII|θ as GEII |θ =
[
IntImp|θ × i|θ

] 1

2

, which is

a more discriminating version of GIntImp. A similar approach leads to the
definition of a generalised probabilistic measure of deviation, GEIPE|θ, as

GEIPE|θ =
[
GIPE|θ × i|θ

] 1

2 .

Their behaviour, compared to their original counterparts, is represented
figure 1. They were obtained using 3 different values for θ, θ = 0.1 (thus
targeting at independency), θ = 0.2 (targeting for situations such that B

happens twice more often when A is true) and θ = 0.5 (prediction).

Fig. 1. Behaviour of the measures, in function of pb/a for n = 1000, pa = 0.05 and
pb = 0.10

4 Conclusion

Following modelling and coherence principles, we proposed in this paper an
innovating framework, from which a unified view of a large number of interest-
ingness measures can be drawn, and which clarifies some of the links between
these measures. Moreover, this framework is at the basis of the definition
of new measures, namely the generalised intensity of implication, generalised
probabilistic discriminant index, generalised entropic intensity of implication
and the generalised probabilistic measure of deviation from equilibrium, that
all compare the confidence of a rule to a reference parameter.
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