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Abstract. Modeling, reverse-engineering and analysis of macromolecular networks
has spurred increasing interest in the computational biology and the biostatistics
communities. Biologists need rigorous and flexible tools to describe, infer and study
these complex systems. This survey focuses on some of the latest advances on the
corresponding direct and reverse modeling approaches.
Keywords: biological networks, gene networks, metabolic networks, machine learn-
ing.

1 Introduction

With the availability of complete genome sequences and high-throughput,
post-genomics experimental data, the last 5 years have witnessed a growing
interest in the study of networks of macromolecular interactions.

During the last few years, modeling efforts have targeted several dis-
tinct types of networks at the molecular level : gene regulatory networks,
metabolic networks, signal transduction networks or protein-protein interac-
tion networks, not to mention networks of interactions that are not restricted
to a cell (intercellular communications) or take place at an altogether differ-
ent level of detail (immunological networks, ecological networks). Here, we
focus exclusively on molecular processes that take place within a cell, and
more specifically on two distinct types of cellular mechanisms : transcrip-
tional regulation and metabolism.

A major challenge consists in identifying with reasonable accuracy those
complex macromolecular interactions that take place at different levels from
genes to metabolites through proteins. Once identified, a network model can
be used to simulate the process it represents, or for a variety of analyses,
ranging from statistical properties of its topology to predictions of features
of its dynamic behavior, or even prediction of cellular phenotypes.

This review focuses on modeling frameworks for biological networks, and
on the existing methods to identify models from data within these frame-
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works. Framework choice and design are influenced both by targeted anal-
yses, and by the need for model identification methods that will yield ex-
ploitable results given available experimental data and prior knowledge.

2 Models of biological networks

Why design models of biological networks ? A first motivation is to present a
synthetic view of the current state of biological knowledge on a given network,
and to structure it in a way that brings to sight relevant properties that might
remain hidden without the model, or with a less relevant model. A second
motivation is to allow predictions of (properties of) the network’s dynamical
behavior, one key point being that if these predictions can be compared with
experimental results, they should allow either confirmation of the model’s
accuracy or, better yet, correction of the model.

Recent modeling framework proposals abound (see [de Jong, 02] for a
detailed review), resulting in significant advances in the biological network
modeling field, but also in a conceptual landscape that seems somewhat clut-
tered and unstructured. This impression is only superficial, however. The
landscape can be simplified by regrouping frameworks that have similar un-
derlying mathematical structure. In addition, models are very often goal-
oriented, each framework was originally designed with some analytical aim
in mind. In the rest of this section, we review families of formalisms classified
according to the types of analyses and predictions for which they are best
suited.

As we will see in the section 3, however, such a classification is only
one-half of the story : available experimental data and model identification
methods can also have a strong influence on the choice or design of a frame-
work. The final modeling choice is often the result of a subtle balancing
act between the requirements of model identification and the goals of the
intended analyses.

2.1 Gene regulatory networks

Transcriptional regulation is the process by which genes regulate the tran-
scription of other genes. A gene A directly regulates a gene B if the protein
that is encoded by A is a transcription factor for gene B, ie if it binds to DNA
on a specific site near the sequence coding for B, called a regulatory region

of B, and activates or inhibits its rate of transcription. Regulation can be
indirect, e.g. A activates B, which activates C, and cooperative, i.e. several
genes regulate the same target gene in a non purely additive manner.

Several types of experimental data provide information on the transcrip-
tional regulation process, some of which can be produced at high-throughput,
while others still result from targeted, context-dependent assays and there-
fore can be acquired only for small networks. The main high-throughput
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technology is DNA chips which measure the concentration of mRNAs (a.k.a
the expression level of genes) corresponding to all genes (or a large set of
genes) in the organism under study, for several time-points or several differ-
ent conditions, i.e. environmental changes, genetic or chemical perturbations
of the system [Spellman et al., 98]. These experiments can be seen as pro-
viding instantaneous pictures of the state of the regulatory network. Other
sources of information include ChIP-chip ([Lee et al., 02]) assays, that de-
tect direct regulatory influences by identifying the binding of a protein to
a regulatory region (in other words, a protein-DNA interaction), as well as
the identification of sequence segments that are similar to known regulatory
sequences, using sequence comparison methods. So far, large-scale expression
and protein-DNA datasets have been generated mainly for model organisms,
i.e. Saccharomyces cerevisiae (common yeast) and to a lesser extent the bac-
terium E.coli, making these the most likely candidates for any large scale
reverse modeling effort.

2.1.1 Analyses of network topology : directed graphs The first cate-
gory of properties of interest in biological networks are those related to their
(static) network structure. Such topological analyses are most meaningful
when applied to large (‘genome-scale’) networks, the aim being to identify
statistical properties that can be interpreted as ‘traces’ of underlying biolog-
ical mechanisms or design principles, related for instance to their dynamics
[Shen-Orr et al., 02, Watts and Strogatz, 98] ( how the connectivity structure
of the biological process reflects its dynamics), to their evolution [Jeong et al.,
00, Wagner, 01] (i.e. likely scenarios for the evolution of a network exhibiting
the observed property or properties), or to both [Jeong et al., 01, Milo et al.,
04].

One should emphasize that those analyses that are motivated by the
search for insights into network dynamics focus on network structure mostly
because large-scale data on network dynamics is not yet available. They
can provide valuable insight insofar as the interpretative leap between static
structure and dynamic behavior is performed carefully. Statistical graph
properties that have been studied in this context include the distribution of
vertex degrees [Jeong et al., 01], the distribution of the clustering coefficient
and other notions of density [Newman, 03, Guelzim et al., 02], the distri-
bution of vertex-vertex distances [Ravasz et al., 02], and the distribution of
network motifs occurrences [Milo et al., 02].

The framework of choice to study these properties is also the most straight-
forward one. A gene regulatory network is viewed as a directed graph : a pair
(V,E) where V is a set of vertices and E a set of directed edges, i.e. pairs (i,j)
of vertices, where i is the source vertex and j the target vertex. Vertices of
the graph represent genes, edges represent regulatory influences. Note that
in some cases, it may be preferable to work with undirected graphs instead,
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for instance when only the existence of a correlation between the expression
levels of two genes is known, but not the causal direction.

This simple model can be enriched by adding information (labels) on
vertices or edges : for instance, ’+’ or ’-’ labels on edges may indicate positive
or negative regulatory influence, the existence of an edge may be specified as
conditional on the cell being in a specific global state, or on the source gene
(the regulator) being expressed above a given threshold. These latter types
of additional information, however, refer implicitly to notions of state and
temporal evolution, and thus lead naturally towards qualitative dynamical
models.

Finally, it is worth mentioning that enriched graph representations are
also at the core of most existing biological pathways databases [Cary et al.,
05]. One reason is their simplicity, another one is that basic or complex
queries on biological networks often correspond to classical operations on
graphs, e.g. the search for paths between genes obeying given conditions.

2.1.2 Analyses of network dynamics : continuous models, discrete

models The dynamics of regulatory processes has been the object of intense
recent scrutiny. Whereas understanding the detailed dynamics of a regulatory
network requires more experimental information than deciphering its static
structure, dynamics is obviously one step closer to biological function.

Models can be used to run simulations of the biological system under
study, with various choices of values for parameters corresponding either to
unknown system characteristics or to environmental conditions. Comparison
of simulated dynamics with experimental measurements can help refine the
model or provide insight on qualitative properties of the system’s dynamical
behavior. The latter can also be addressed directly, by reasoning on or iden-
tifying properties of the system’s behavior instead of simulating it, with the
help of theoretical tools that depend on the choice of formalism. Dynamical
properties of interest include the identification of steady states or limit cy-
cles, identification of multistable (e.g. switch-like) behavior , identification of
oscillatory behavior, characterization of the role of some parts of the network
in terms of signal processing (e.g. amplifiers, derivators, logic gates) , and
assessment of robustness environmental changes or genetic perturbation (see
[Tyson et al., 03, Wolf and Arkin, 03] for detailed review).

The default modeling option to simulate the dynamics of regulatory pro-
cesses is to write a system of differential equations that govern the evolution
of mRNA and protein concentrations. Typically, a gene regulatory network
is modeled as a system of rate equations of the form : dxi

dt
= fi(x), 1 ≤ i ≤ n

where x= (x1, . . . , xn) is the vector of concentrations (of mRNAs, proteins
or small molecules) and fi : < → <

n a function, not necessarily linear. The
level of detail and the complexity of these kinetic models can be adjusted,
through the choice of the rate functions fi. Typical tradeoffs include :
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• using a more or less simplified set of entities and reactions, e.g. choosing
whether to take into account mRNA and protein degradation,

• including delays to account for transcription, translation or diffusion time

• using more or less detailed kinetics, i.e. specific forms of fi

Systems of differential equations as a modeling framework for biological
networks presents two major drawbacks. Each equation in the model requires
the knowledge of one or several parameter values (thermodynamic constants,
rate constants), which is out of the present reach of high-throughput data
production techniques. It is thus difficult to instantiate models of large net-
works directly, and reverse-engineering techniques are limited in how much
information they allow to extract from limited datasets. Moreover, deriv-
ing meaningful dynamical properties of large differential equations system is
a challenge : the fi being nonlinear, analytical solutions are not known in
the general case. So far these systems have been mainly used for numer-
ical simulations within given parameter ranges (realistic or not), possibly
complemented by bifurcation analysis, rather than submitted to analytical
approaches [de Jong, 02].

These limitations have motivated two main tracks of investigation on
alternative modeling frameworks for biological networks : simplified kinetic
models on one hand, and discrete1 models on the other hand.

Simplified continuous frameworks include piecewise-linear differential equa-
tions, a special case of rate equations where the response of a gene to regu-
latory stimuli (the function fi) is approximated by a step function [de Jong,
02]. Linearity facilitates the analytical treatment of some dynamical proper-
ties, such as steady states. Systems of piecewise-linear differential equations
can also be analyzed qualitatively by discretizing and recasting them within
the framework of qualitative differential equations, where variables and their
derivatives take qualitative (discrete) values and functions fi are abstracted
into sets of qualitative constraints.

Several discrete modeling frameworks have been proposed, each with a
specific tradeoff between the level of detail of its chosen observables and the
type of analyses that it enables : boolean networks (see below), generalized
logical networks [Thomas et al., 1995](a generalization of boolean networks
that increases biological realism by allowing variables to have more than two
values and using asynchronous transitions ), petri-nets [Matsuno et al., 2000],
process-algebra [Regev et al., 2001], rule-based formalisms [Chabrier et al.,
04].

1 Here, we mean that time is discretized, leading to frameworks where the dynamics
is governed by state transitions between t and t+1. Discretization of expression
levels and/or of rate functions are a different path to simplification of either
time-continuous or time-discrete frameworks.
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2.2 Metabolic networks

Metabolism is the set of processes by which a cell extracts energy and raw ma-
terial from its environment, and uses both to produce the components (DNA,
proteins, lipids...)necessary for its survival and function, and to interact with
its environment. Metabolic networks are thus networks of biochemical re-
actions : each reaction transforms one or several substrates (metabolites,
i.e. small organic molecules) into one or several products (metabolites as
well).To occur within a cell at a significant rate, a metabolic reaction needs
to be catalyzed by an enzyme (a protein with catalytic activity) specific to
that reaction.

Much of the classification introduced above for regulatory networks ap-
plies to metabolic networks ; indeed, several formalisms and analytical tools
have been used on both. One should not be misled by these similarities,
however : metabolic networks and regulatory networks represent very dis-
tinct, albeit interrelated, biological mechanisms, and this does translate into
mathematical differences.

The framework of choice to capture the connectivity structure of a metabolic
network is a directed bipartite graph (rather than a simple directed graph)
: vertices correspond respectively to metabolites and reactions, edges repre-
sent production or consumption of a metabolite by a reaction. Two types
of simpler graphs can be extracted from such a bipartite graph : enzyme

graphs, where an edge between two reaction vertices denotes the fact that
a product of the source reaction is a substrate of the target reaction (and
can also denote the causal ordering of reactions in metabolic processes), and
metabolite graphs, where vertices representing metabolites are linked when a
reaction consumes one to produce the other. For all three graph types, active
areas of research include the definition of biologically meaningful distances
and the design of relevant and computable subgraph similarity measures to
allow comparative studies.

Metabolic networks dynamics can be expressed as described above, us-
ing systems of rate equations and a given approximation for rate functions.
Attempts at analytical reasoning have spurred the development of various
simplified frameworks, including Biochemicals Systems Theory [Savageau,
1991] where production and consumption rates are expressed using a power-
law approximation, and Metabolic Control Analysis [Westerhoff et al., 1994],
which focuses on a first-order approximation of the dynamical system in the
neighborhood of steady-state. It is worth noticing that discrete frameworks
have seldom been used to model metabolism : metabolite fluxes and con-
centrations are the key variables of interest here, in contrast with regulatory
networks where an on/off discretization of the state of a gene already pro-
vides valuable information on the regulatory logic. Another type of abstract,
scalable framework have been successfully applied to metabolic modeling :
constraint-based modeling.
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Constraint-based modeling is a framework dedicated to the modelling of
metabolic processes at steady state : a global state of the metabolic network
is defined as a distribution of fluxes within the network reactions. It emerged
in the 90s as a simplification of kinetic models (mostly in the Schuster and
Palsson groups), and was developed to allow tractable modelling of genome-
scale metabolic networks [Price et al., 04]. The steady-state hypothesis po-
sitions the framework at a level of detail intermediate between description
of static network structure and representation of network dynamics. It is
designed to represent incomplete information, yet to allow some prediction
of metabolic behavior. The focus, rather than being on fully instantiated
descriptions of the system’s behavior, is on sets of such descriptions, i.e.
sets of flux distributions compatible with a set of constraints representing
the current knowledge on the structure of the network, on thermodynamic
and kinetic parameters, and on input/output relationships of the network
with its environment. The solution set can be refined incrementally as new
constraints are added, ensuring some robustness in structural analyses and
metabolic behaviour predictions with respect to modifications of the model.
As this framework has been applied successfully to a variety structural anal-
yses and predictive tasks on large metabolic networks in bacteria and yeast,
yielding interesting biological results, efforts are under way to extend it while
preserving simplicity and tractability.

3 Model identification: a machine learning problem

Once a formal framework is defined to describe models of biological networks,
the question of how to choose parameters arises. Various works have shown
that this identification problem can be expressed in the framework of ma-
chine learning. Given a family of mathematical models of gene interactions
and a set of observations, learning consists here in optimizing the parame-
ters of the model in such way that it captures the observed behavior of the
true system. The ability of the instantiated model to be used in prediction
is referred as the generalization property. A model is able to generalize if
learning ensures a trade-off between a good fit to the data and simplicity of
the model. Solving a learning problem leads to three key questions : the rep-
resentation problem, the optimization problem and the validation problem.
The representation problem concerns mostly the choice of the formalism in
which data and the model are going to be expressed, and the method to en-
code them into this formalism. Both symbolic and numerical learning leads
to an optimization problem whose nature is combinatorial (for symbolic
learning) and numeric (for statistical learning). Statistical approaches gen-
erally use maximum likelihood criteria penalized by a parsimony constraint.
Combinatorial approaches are solved using heuristics to ensure a large ex-
ploration of the models spaces. At last validation is required to identify
how one can trust the inferred model. In this area statistical approaches
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benefits from an important background in statistical validation of estimation
methods. The validation question is far from being solved in the context of
network reconstruction, however.

Most efforts on biological networks identification fall into this framework,
albeit most of them do not address each of the above key issues. They can
be divided into two categories: on one hand, the static approaches that ne-
glect temporal aspects and focus on the sole reconstruction of the interaction
graph, and on the other hand, the dynamic approaches that aim at model-
ing the underlying dynamic system providing both structure and dynamics
parameters.

3.1 Static approaches

Several static approaches have yielded promising results in reconstructing
gene networks. In order to focus on the structure identification problem,
they ignore the temporal aspects and search for causality chains among the
variables at hand. This point of view is based on the implicit assumption
that the underlying dynamical process is at equilibrium, and that no circuit
exists among studied genes.

Bayesian networks are undoubtedly the most successful approach to gene
networks structure reconstruction.They represent the expression levels of
genes as random variables, whose joint probability law has to be identified.
This model has two major advantages : it takes into account the inherent
stochastic character of biological processes and it is able to cope with noisy
data. A graphical display of such models can be obtained by considering di-
rected acyclic graphs whose vertices are genes and whose edges are modeled
by conditional probabilities distributions. Choosing discrete or continuous
variables, parametric or non parametric forms for the cpd’s are the main
questions in the representation problem.

Learning bayesian networks consists in estimating the joint probability
distribution of the variables using available data. The core issue is to find
the decomposition of the joint law in the conditional probability distributions
(cpd’s) among the relevant variables. This decomposition defines the graph
structure. Once the structure of a network is given, the task of learning cpd
’s is not difficult. Learning the structure, however, is an NP-hard problem
that can only be tackled by heuristics. Several pioneering results in this area
have been achieved using a constructive strategy. Reconstruction has been
shown to be successful on the yeast cell cycle dataset of [Spellman et al., 98].

Extensions of these results were obtained by integration of prior knowl-
edge into the model. For instance, [E.Segal et al., 01] introduced an enriched
formalism, probabilistic relational networks (PRN) that allows to deal with
object variables instead of simple discrete or continuous variables. Informa-
tion about promoters and genomic sequence can be thus be introduced. While
information propagation in the net is modified and for this reason learning
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becomes also more complex, this work opens the door to new formalisms that
couple high level descriptions with a probabilistic framework.

Another variations on bayesian networks models is the so-called ’module
networks’ approach. Module networks introduced in [E.Segal et al., 03] have
been proposed as bayesian networks with a special structure, where the vari-
ables sharing the same parents are gathered into a so-called module, i.e. a
set of genes that appear to be co-regulated in some experimental conditions.
Elucidating which are the genes that belong to the same modules and what
are the conditions under which these regulations occur can be solved using
a Expectation-Maximization(EM) based algorithm that starts from relevant
initializations.

Validation can consist in the comparison between the inferred structure
and the true structure. The simplest way consists in a comparison between
the inferred network with other sources of knowledge. Precision and recall
measures, ROC curves have also been proposed to evaluate the power of
learning algorithms [Husmeier, 03].

However all these static approaches are not able to discover circuits in a
graph interaction. The reason is that without considering time, it is not pos-
sible to elucidate feedback interactions that can only be observed an through
time.

3.2 Dynamic approaches

Dynamic approaches aim at identifying the dynamics of the system imple-
mented by a biological network while extracting the structure. Only discrete-
time models are considered for learning since experimental data come from
discrete-point measurements. In the area of genetic networks, the available
data take the form of gene expression kinetics measured after some perturba-
tion of the studied organism. While these data are more expensive to generate
than static data, a few subsets exist and mainly concerns model organisms
such as bacteria or yeast. Modeling dynamics of a network can serve both
exploratory and explanatory goals. A long-term goal is of course to exploit
these models in simulation and prediction for drug-design and therapeutical
targeting. However its should be stresses that this feature has not yet been
fully exploited in the existing works.

Dynamic models that have been considered for learning include Boolean
networks, artificial recurrent neural networks, dynamic bayesian networks
including state-space models. Learning in boolean networks has first been
tackled with combinatorial algorithms [Akutsu et al., 1999]and then renewed
by using a randomized algorithm. However the best way to reduce complexity
of the problem is to reduce the class of boolean functions as proposed in[Gat-
Viks et al., 03] with the so-called chain functions. Promising new directions
have also been introduced by [Shmulevich et al., 02] with the introduction
of Probabilistic Boolean networks and learning algorithms devoted to their
reverse engineering.
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While boolean networks simplify the description of the system’s dynamical
behavior, quantitative models have attracted much attention from machine
learning community because of the existence of a large set of efficient learn-
ing algorithms for numerical data. These models are usually based on the
quantization of differential equations. Again the representation issue implies
to choose among linear/non linear models and discrete/continuous variables.
Keeping the model deterministic allows its implementation as a recurrent
artificial network (see for instance [D’haeseleer et al., 00]and [Mjolness et

al., 00]) for which learning algorithms such as genetic algorithms and back-
propagation through time have been designed .This last feature avoids avoids
data-overfitting. This framework can be compared to dynamic Bayesian net-
works that are inspired from stochastic differential equations [Hoon et al.,
03], or can simply be obtained by adding a noise component to the equation
[Perrin et al., 03]. These approaches aim at estimating the joint probability
of the temporal sequence of network states. The optimization task takes the
form of a likelihood maximization problem with a parsimony constraint.

Several dynamic approaches have been applied to different models, first
order [Hoon et al., 03], second order models [Perrin et al., 03], and from
linear to non linear [Nachman et al., 04] to splines-based models. Validation
of dynamical approaches can be performed by measuring the ability of the
model to make k-step predictions or to predict the last part of the sequence
used for training. However the most difficult point remains the ability of the
algorithm to retrieve the structure of the network which can be deduced from
the identified parameters.

4 Conclusion and perspectives

We have reviewed modeling formalisms for biological networks and their re-
lationship to down stream analysis and reverse engineering methods. As this
field of research matures, it is becoming increaslingly clear that there is no
one-size-fits-all solution, but rather a range of frameworks and methods, each
with its specific trade-off between abstraction and tractability, the ultimate
test being the ability to answer relevant biological questions. Indeed, network
models are only starting to become useful tools for biological investigation.
Promising research directions include the design of frameworks that allow
joint modeling of metabolism and regulation, the refinement of stochastic
rule-based frameworks that are meant to capture intrinsic stochasticity in
regulatory networks dynamics, the design of dedicated process calculi, and
the development of model-checking tools. Another key direction, towards,
efficient model inference is the elaboration of formalisms that are able to
support high level language of description while managing uncertainty in the
data.
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