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1 Introduction and biological background

With currently available genomic methods, it is increasingly easy to obtain
detailed information on the genetic code, found in most organisms in the
form of DNA strands or chromosomes. Due to the nature of DNA, it is not
a surprise that the smallest detectable difference between two chromosomes
is the ”Single Nucleotide Polymorphism” (SNP), corresponding to a change
in a base occurring at a given position (or locus) in two chromosomes. SNPs
happen to be fairly common in the genome (≈ 1 every 100 to 300 base pairs),
and have become of primary importance for mapping purposes (i.e. locating
a gene within a chromosome) because they provide a very dense set of mark-
ers.
In diploid organisms, chromosomes are found in homologous pairs. There-
fore, the genetic information, or genotype, consists of the sequences of both
copies. While this information is readily obtained from sequencing, it is not
technically feasible, at least with today’s high throughput methods, to obtain
phased information, corresponding to the exact two sequences underlying the
genotype. Consider for example a situation where at a first locus, the geno-
type A T was found (A on one chromosome, T on the other), and on a nearby
locus the genotype G C was found. Knowing phase amounts to know if one
chromosome bore A and G and the other T and C, or alternatively A and C
and T and G. When phase is known, a genotype may be split in two haplo-
types : these correspond to a combination of SNPs on the same chromosome.
Haplotypes give a more global picture of genetic variation, are more closely
related to the notion of allele, and provide more opportunity to detect a
dysfunctional version of a gene: it is therefore important to obtain this infor-
mation, especially to correlate it with phenotypic information, corresponding
to symptoms or conditions seen in individuals in case of polygenic disease.
In this text, a presentation of statistical haplotype reconstruction is given,
and a review of currently used algorithms is presented. We conclude with
some considerations regarding inclusion of these haplotypes in the analysis
of correlation between haplotypes and phenotypes.
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2 Notation

Consider a DNA region where K SNPs have been identified, and sequenced in
a sample of individuals. We obtain a n−sample of genotypes G = (gi)1≤i≤n

taken from (assumed) independent individuals, each consisting of K×2 val-
ues. Each genotype is made of two unobserved haplotypes Hi = (hi,1, hi,2)
taken in a collection H = (hj)1≤j≤m haplotypes existing in the popula-
tion. The distribution of probability on haplotype s in the population is
Θ = (θj)1≤j≤m , with

∑
Θj = 1

The precise number of haplotypes is generally unknown, but is obviously
bounded upwards by 2K. It is generally far less, and probably limited in
most cases to a few dozens. Furthermore, in a given sample, random fluctu-
ations may cause the absence of some haplotypes.
A pair of haplotypes is consistent with a genotype if the union of the pair
sums up to the genotype. Such a pair is called a resolution of the genotype.
The covering of a haplotype h is the number of individuals whose genotype
may be resolved using h and another haplotype.

3 Methods based on parsimony

These methods, first proposed by Clark, provide a very straightforward ap-
proach to haplotype reconstruction(1). First, the set of haplotypes H is set
to that of the “unambiguous” haplotypes H U determined from all individuals
who have at most one discordant SNP among the K sequenced sites. Some
ambiguous subjects may readily be resolved using pairs of haplotypes found
in H U . In case of multiple solutions, one is taken at random. Some subjects
may be resolved using one haplotype in H U and another haplotype h ,in this
case the latter is added to H . By repeatedly applying the last step with un-
resolved genotypes , the set of haplotypes is grown to explain the maximum
number of genotypes. Limitations of the method include that some genotypes
may not be resol ved at all by this procedure; furthermore it is dependant
on the order of presentation of the genotypes. Clark advocated repeating the
procedure several times to choose the most parsimonious solution.
A more systematic approach was presented recently, using a branch and
bound algorithm(2). Instead of adding sequentially haplotypes from ran-
domly chosen genotypes, the set of resolutions consistent with each ambigu-
ous haplotype is first enumerated. Then, starting from a solution (for example
take the first resolution of each genotype), all combinations are sequentially
explored. When it appears that the explored solution will require more hap-
lotypes than the best current solution, it is discarded at once. When an
explored solution requires less haplotypes than the best current, it replaces
this latter. A solution with the least possible haplotypes is ultimately recov-
ered. With minor improvements, this approach is able to deal with missing
data at some SNPs: it suffices to include as resolutions all pairs of haplotypes
consistent with the observed sites.
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4 Haplotype reconstruction as perfect phylogeny

One model for describing genetic evolution is known as the coalescent . In
summary, evolution is described along a tree, starting from a single branch
corresponding to a unique ancestral allele, and where each embranchment
corresponds to the occurrence of a new haplotype, appearing by mutation
from an already existing one. The resulting tree is called a phylogeny, where
all leaves correspond to existing haplotypes. In practical problems, phyloge-
nies are unknown, but because haplotypes are thought to have occurred by
the coalescent, it is tempting to impose that the set of haplotypes used to
explain a sample of genotypes should form a phylogeny(3). In this approach,
a further hypothesis is that recombination has been rare, whereby new hap-
lotypes as a mixture of already existing ones is neglected.
The set of genotypes is presented as a n × K matrix, with values 0, 1, 2
corresponding to a “wild” homozygous, “mutated” homozygous, and het-
erozygous site. The Perfect Phylogeny Haplotype problem is then to find a
2n × K binary matrix M of resolutions, with each row a haplotype, and a
phylogeny where each row of M corresponds to a leaf.
An algorithm has been proposed to efficiently find a solution to this problem
, when it exists. It rests on the characterization of a matrix M as defining
a perfect phylogeny if no submatrix of size 2n × 2 may be extracted that
contains all rows to exclude possible resolutions. A bound is available for
the number of solutions: if K−K0 is the number of sites where heterozygos-
ity has been observed, then there are at most 2K0 solutions allowing perfect
phylogeny.

5 Maximum likelihood with the EM algorithm

EMalgorithm(4)

Under the assumption of random mating, the probability of finding a
genotype made of the pair ( h.,1= hj, h., 2=hk ) is the product θi, θj of
the individual haplotype frequencies. If the pairs making a genotype g are
not observed, it is still possible to write the likelihood of this genotype by
summing the probabilities over a ll its resolutions. Therefore, the likelihood
is available, and maximum likelihood estimates may be obtained.
It turns out that a solution may be obtained by the EM algorithm. Write Θt

for the distribution of the m g enotypes. A formal EM algorithm is obtained
by iterating over equation

θt+1
g =

Eθt(ng|G)

2n

until probabilities do not change much. Uncertainty on the frequencies may
be obtained from the associated Fisher’s information matrix.
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Contrary to the two methods described above, the method does not end up
with a single possibility for each genotype. On the contrary, the probability
of each consistent resolution may be determined and taken into account in
further calculations. Like all instances of the EM algorithm, convergence
may be rather slow, all the more when K increases.

6 Haplotype reconstruction using Bayesian methods

PHASE(5)

To improve on EM reconstruction, Bayesian methods have been pro-
posed that incorporate imputation of haplotypes using Gibbs sampling. In
this approach, convergence to a stationary distribution of haplotypes may
theoretically be obtained.

Starting form an initial set of resolutions H(0) = (H
(0)
i )1≤i≤n for G, where

each H
(0)
i corresponds to a pair of haplotypes resolving individual i , the fol-

lowing steps are repeatedly applied to obtain an updated resolution H (t+1)

from the current set H (t) :

1. choose an individual i from all ambiguous individuals,

2. sample H
(t+1)
i from the law of H

(t+1)
i |G, H

(t)
−i , where H

(t)
−i is the current

set of resolutions excluding subject i ,

3. set H(t+1) = (H
(t+1)
i )1≤i≤n

The distribution is updated a large number of times, and samples from
the distribution on haplotypes is obtained by states of H(t), after an appro-
priate burn−in period has been discarded, and with suffic ient thinning to
avoid correlation in the output.
The only problem left in this approach is the determination of a convenient

proposal law for H
(t+1)
i |G, H

(t)
−i . Stephens has shown that this law was pro-

portional to π(hi,1|H−i)π(hi,2|H−i, hi,1) , where π (h |H ) was the conditional
probability of a haplotype h given a set H of previously sampled haplotypes.
Fur ther, they proposed, from an analysis of the distribution of haplotypes
generated under the coalescent theory in randomly sampled individuals that
this conditional probability could be approx imated by a parametric law de-
pending on a mutation rate and mutation matrix that could efficiently be
sampled from.
However, when haplotypes are made of a large number of SNPs, it becomes
impractical to adopt the above approach. Therefore, instead of updating the
whole haplotype for subject i , only a subset of SNPs is updated at a given
time, giving a local updating strategy.
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HAPLOTYPER(6)

Another take at updating a large number of haplotypes is to explicitly
subset the problem, using a “divide and conquer” strategy. In this approach,
the set of K SNPs is split in adjacent blocks of moderate length L (≤ 8
for example). Because there are less than 2L haplotypes, it is possible to
enumerate all haplotypes in the block, and to sample from their distribution
by Gibbs sampling, using a Dirichlet prior for the frequency of haplotypes.
Once convergence is met on the separate blocks, ligation may occur: adjacent
blocks are united either sequentially or hierarchically. At each ligation, a set
of haplotypes for exploration is made by combination of the best B haplotypes
of each block. This strategy leads to much improved computational efficiency.

7 Conclusion

Several strategies have been described for haplotype reconstruction from
genotypic data. The first are combinatorial, and proceed by a systematic
exploration of all resolutions. These methods have two characteristics: they
are easily understood, and efficient algorithms have been found to reach a
solution when it exists. However, these methods are not cast in a statistical
framework, and may give a false sense of certainty when a solution is found.
Indeed, statistical uncertainties due to sampling and ad hoc simplifications
are not taken into account.
The second kind of methods is based on statistical maximum likelihood es-
timation, either in a frequentist or Bayesian framework. The EM approach
was until recently the only available approach of this kind. Of practical im-
portance is that it is possible to analyse the association between phenotypes
and haplotypes, even if these have not been observed(7).
In fact, it is possible by spreading every observed genotype on the set of
compatible haplotypes.
Methods based on more Bayesian sampling, using the Gibbs sampler have
emerged as a very efficient alternative, consistently outperforming the previ-
ous methods. Software packages have been released that make the approach
available to the community. They differ in how much data they can handle
in the same run; and also in how missing data is dealt with. Some progress
is possible on the algorithms : for example, Stephens recently incorporated
the idea of partition/ligation in their approach, leading to much improved
performance(8). It is still unknown if perfect sampling could be used in this
respect.
Finally, it should be remarked that the presented methods have been eval-
uated mostly using simulated data. It may now be technically possible to
obtain phased information on small samples, which will provide an opportu-
nity to test the methods with real data.
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