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Abstract. The number of statistical tools used to analyze transcriptome data is
continuously increasing and no one, definitive method has so far emerged. There
is a need for comparison and a number of different approaches has been taken to
evaluate the effectiveness of the different statistical tools available for microarray
analyses. In this paper we describe a simple and efficient protocol to compare the
reliability of different statistical tools available for microarray analyses. It exploits
the fact that genes within an operon exhibit the same expression patterns. We have
compared five statistical tools using Bacillus subtilis expression data: ANOVA,
PCA, ICA, the t-test and the paired t-test. Our results show ICA to be the most
sensitive and accurate of the tools tested.
Keywords: operon, criterion of comparison, transcriptome, expression analysis.

1 Introduction on microarrays and their analysis

Protein activities are the bases of cell and organism functioning. In order
to fit to changes in extern or interne physiological conditions the expression
level of some genes and the quantity of the corresponding proteins may vary.
As proteins are much harder to analyze than mRNAs, techniques for tran-
scriptome analysis have been more popular up to now. In the last decades
a tool has been developed in order to measure the expression levels of many
genes (several thousands of genes) at the same time.

As microarrays allow measuring the expression levels of thousands of
genes at the same time, this opens the possibility to identify differentially
expressed genes [Callow et al., 2000] and to cluster those genes sharing sim-
ilar expression patterns [Heyer et al., 1999]. This allow the identification of
gene functions, regulation and networks.

Different tools have been developed for or adapted to the analysis of the
huge amount of data created in microarray experiments. The number of tools
is continuously increasing and no one, definitive method has so far emerged.
There is a need of comparing the tools, but identifying an unbiased and
biologically relevant criterion for the comparison is difficult [He et al., 2003].
A number of different approaches has been taken to compare the effectiveness,
or reliability, of the different statistical tools available for microarray analyses:
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* Some are based on artificial data to define precisely the specificity and
sensitivity of these statistical tools ([Reiner et al., 2003]).

* Others are based on experimental data. The quality of a statistical tool
can be measured by the number of differentially expressed genes which it
reveals. A statistical parameter like the p-value may be used [Pan, 2002].

* Finally some authors combine two criteria, the number of identified
genes and their physiological coherence, based on an a priori knowledge of
the biological phenomenon studied [Troyanskaya et al., 2002].

In this paper we try to establish a protocol for the comparison of sta-
tistical tools (available for microarray analysis) which is objective, reflects
a biological reality and is not bound to one, particular set of experimental
conditions. It is based on the expression coherence of genes belonging to the
same operon. In bacteria a number of genes are organized in operons, that
is to say clusters of contiguous genes transcribed from one promoter. For
an operon a single mRNA corresponds to several genes whereas for isolated
genes one mRNA corresponds to one gene. It has been shown that the genes
within an operon exhibit the same expression patterns [Sabatti et al., 2002].

That is why, a good and reliable statistical tool is one that, when detecting
an over- or under-expression for a gene belonging to an operon, also detects
this pattern for the other genes belonging to this operon. This criterion,
based on the expression coherence of genes belonging to the same operon,
therefore reflects a biological property that is not bound to a particular set
of experimental conditions.

We have tested this criterion on five statistical tools using Bacillus subtilis

expression data [Sekowska et al., 2001]: The Analysis of Variance (ANOVA),
the Principal Component Analysis (PCA), the Independent Component Anal-
ysis (ICA), the t-test and the paired t-test. Note: ANOVA and the t-tests
need the a priori definition of factors, which could influence the level of gene
expression; ICA and PCA do not need the definition of any factor for their
use.

2 Methods

The microarray data used in this study stem from experiments on the sulphur
metabolism of Bacillus subtilis [Sekowska et al., 2001]. The experiments
were carried out using B. subtilis gene arrays; each array contained all of B.

subtilis ’ genes and one gene is represented by one spot. Each gene spot is
represented twice on the array.

The aim of these experiments was to identify the genes differentially ex-
pressed when the bacteria are grown with methionine or methyl-thioribose
as sulphur source. The experiments followed a fully crossed factorial design
with 4 factors (sulphur source, day of experiment, amount of RNA used and
duplicate of each spot).
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We have used the logarithm (base 10) of these raw data in order to re-
move much of the proportional relationship between random error and signal
intensity. We have normalized the data (mean equal to 0 and variance equal
to 1 for each experimental condition).

We have chosen to analyze the expression data for the two experimental
factors ”sulphur source” and ”day of experiment”. For ICA and PCA the
axes which correspond to these two factors are determined a posteriori. For
PCA the factor ”day” corresponds to the third axis and the factor ”sulphur
source” to the fifth. The fourth axis corresponds to an interaction between
these two factors.

For each gene, the model used for ANOVA is the following:

Yijkl = µ + Si + Jj + Ck + Dl + εijkl

where Yijkl is the gene intensity
µ is the mean of the intensities of expression measured for the gene
Si, Jj , Ck and Dl are, respectively, the effects of sulphur source i, exper-

iment day j, RNA concentration k and duplicate l on the gene intensity
εijkl is the residual error.
We need to know how the genes of Bacillus subtilis are organized into

operons. A presumed operon is defined as a group of contiguous genes that are
on the same reading strand delimited either by a promoter and a terminator
(predicted or not) or a gene, which lies on the other DNA strand. This
allowed to find the operons in Bacillus subtilis (Subtilist).

To compare statistical tools, one needs to define quantitative criteria that
will measure the ”tool reliability”: sensitivity, accuracy and the detection of
false positives need to be evaluated.

The following procedure was applied:

1. The genes are ranked as a function of their expression changes (rank #1
is the most significant).
In order to compare the five tools under the best possible conditions, the
genes are ranked according to the most relevant criterion for each tool,
that is to say, the one that gives the most coherent results for the tool:
* for ANOVA and the t-tests, the p-value obtained for each gene;
* for PCA and ICA, the remoteness from the cloud centre of the projec-
tion of the gene on the axis studied.
We thus obtain for each tool a list of genes, ranked according to a specific
criterion. The order of the genes on the lists obtained may differ from
each other.

2. ”Detected Operons” are identified based on the ranks (one gene of the
operon with rank ≤ 20 and another gene with rank ≤ 100).
It should be noted that a priori the ”Detected Operons” may be different
for the various tools tested.

3. The Most Significant Interval (MSI) is determined.
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In order to facilitate the analysis and comparison of the statistical tools
we introduce the Most Significant Interval (MSI). It is calculated for each
”Detected Operon” in the following manner:

MSIj = medianj − firstj

Where MSIj is the MSI of ”Detected Operon” j
medianj is the median of the rank values of the genes belonging to ”De-
tected Operon” j
firstj is the smallest rank value within ”Detected Operon” j

4. False positives are evaluated (MSI≥700).
The reliability of a statistical tool will also be measured by the absence
of false positives. For the definition of false positives we exploit the
fact that each gene spot had been duplicated on the microarrays and
any difference measured for two spots belonging to the same gene cannot
have a biological cause. We ranked the genes according to this ”duplicate
factor ”, as described under point 1 and identified ”Detected Operons” as
described under point 2. As there is no biological cause for this detection,
we find ourselves with false positives. The results of this analysis lead us
to conclude that a ”Detected Operon” is a false positive when MSI≥700
(see table 1 for details).

Operon name Operon MSI (most significant interval)
size ANOVA t-test Paired

t-test
PCA ICA

fliLMY cheY fliZPQR flhBAF

ylxH cheBAWCD sigD ylxL

19 2385 2242 1613 1193 2499

yonRSTUVX yopAB 8 61 134 124 127 251
hemAXCDBL 6 1360 1547
ruvAB queA tgt yrbF 5 1005 707

Table 1. Quantification of false positives

[We find ourselves with false positives. One exception is the operon yonRSTUVXyopAB, de-

tected by all four tools, with small MSIs. As we cannot give a biological reason, we suspect that

its detection is due to a default on the microarray used in the experiments.]

5. ”Relevant Detected Operons” are identified (MSI<700). The definition of
”Relevant Detected Operons” follows from the definition of false positives:
”Relevant Detected Operons” have an MSI<700.

6. The accuracy of a ”Relevant Detected Operon” is evaluated (MSI<150).
We define that an operon is detected with good accuracy if its MSI is
lower then a given threshold. Our results lead us to state that: Operons
detected with good accuracy have an MSI<150.

7. The sensitivity of a tool is evaluated.
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The sensitivity of the tools is estimated by comparing the number or
”Relevant Detected Operons” identified by each tool.

We have decided to compare the five statistical tools under three experi-
mental conditions biologists are frequently faced with:

* The experimental factor is identified and fully controlled. In the case
of the microarray data used in this study, this factor is the sulphur source
contained in the growth medium. In one case the sulphur source was me-
thionine, in the other case it was methylthioribose. The five statistical tools
were tested on these experimental data. The results obtained are displayed
in table 2.

Operon name Operon MSI (most significant interval)
size ANOVA t-test Paired

t-test
PCA ICA

yqiXYZ 3 1 1 4 3 6
argCJBD carAB argF 7 15 28 29 201 56
argGH ytzD 3 1 1 6 6 2
ahpCF 2 46 7 85 11 13
lctEP 2 26 36 8
levDEFG sacC 5 316 220 287
sunAT yolIJK 5 634 13
ydcPQRST yddABCDEFGHIJ 15 1313 116
ytmIJKLM hisP ytmO ytnIJ ribR

hipO ytnM

12 45 92

flgM yvyG flgKL yviEF csrA hag 8 509
fliLMY cheY fliZPQR flhBAF ylxH

cheBAWCD sigD ylxL

19 350

yxbBA yxnB asnH yxaM 5 15
yvrPONM 4 494
ycbCD 2 40
comGABCDEFG yqzE 8 49

Relevant detected operons 6 6 9 7 9

Table 2. Comparison of the statistical tools when the experimental factor is iden-
tified and fully controlled

* The experimental factor is identified but not under control. In this case
it was ”day”. The experiments were carried out twice, on different days. The
protocol followed was the same on these two days; however, parameters like
”room temperature” were not necessarily the same, thus introducing a factor
in the experimental setup that was identified but not under control. The
results obtained are displayed in table 3.

* The interaction between experimental factors. The aim of a protocol
is to separate completely the different experimental factors. However, the
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Operon name Operon MSI (most significant interval)
size ANOVA t-test Paired

t-test
PCA ICA

comGABCDEFG yqzE 8 16 26 28 6 4
comFABC yvyF 4 339 66 19
cotVWXYZ 5 148 315 417
groESL 2 37
yvaVWXY 4 53
yqxM sipW cotN 3 79
comEABC 3 35

Relevant detected operons 2 2 2 5 4

Table 3. Comparison of the statistical tools when the experimental factor is iden-
tified but not under control

expression of certain genes may be under the control of more than one fac-
tor. In this case one talks of an ”interaction between experimental factors”.
ANOVA and the t-tests are adapted to the analysis of variations due to a
single experimental factor; they are not well suited for the study of inter-
actions between factors; they were not tested under this condition. On the
other hand, ICA and PCA are well adapted to cope with possible interac-
tions; these interactions are identified because more than one factor plays a
major role in the definition of an axis. The results obtained are displayed in
table 4.

Operon name Operon MSI
size PCA ICA

purMNHD 4 71 57
ybaC rpsJ rplCDWB rpsS rplV rpsC

rplP rpmC rpsQ rplNXE rpsNH rplFR

rpsE rpmD rplO secY adk map

25 51 56

alsS alsD 2 25
rpsL rpsG fus tufA 4 21
yvaVWXY 4 73
yxbBA yxnB asnH yxaM 5 126
yyaEF rpsF ssb rpsR 5 408

Relevant detected operons 3 6

Table 4. Comparison of the statistical tools to detect possible interactions between
the experimental factors
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3 Results and discussion

Microarrays are defined as a tool for analyzing gene expression that consists
of a small membrane or glass slide containing samples of many genes ar-
ranged in a regular pattern. They are widely used for analyzing the relative
transcription level of genes. The number of statistical tools for analyzing the
huge amount of data created in the experiments is continuously growing and
no-one of these tools has yet emerged as the definitive one.

We have developed a protocol for the comparison of statistical tools ap-
plied to the analysis of transcription data. We have applied this method to
compare five statistical tools (ANOVA, t-test, paired t-test, ICA and PCA)
under three typical experimental conditions. All five tools were compared un-
der two of these conditions (see tables 2 and 3 for details), whilst only ICA
and PCA, which do not need the a priori definition of experimental factors,
could be tested under the third condition (see table 4 for details).

Based on our observations, we have defined threshold values to define
”Relevant Detected Operons” (MSI<700), false positives (MSI≥700) and to
define a good accuracy (MSI<150); the sensitivity of the tools is estimated
by comparing the number of ”Relevant Detected Operons” identified by each
tool.

ANOVA t-test Paired t-test PCA ICA

Relevant detected operons
Table 2-4 8 8 11 15 19
Table 2-3 8 8 11 12 13

Accuracy of Detection
Table 2-4 75% 75% 82% 80% 84%
Table 2-3 75% 75% 82% 83% 77%

Table 5. Overview of the results

[The table sums up the results obtained in this study. The first part of the table relates to the

number of ”Relevant Detected Operons” identified and thus to the tools’ relative sensitivities.

”Tables 2 - 4”: adding the results from Tables 2, 3 and 4, the total of ”Relevant Detected

Operons” has been calculated for each tool. The entries for ”Tables 2 - 3” have been obtained

accordingly. The second part of the tables relates to the tools’ accuracies: the percentage of

”Relevant Detected Operons” identified with a ”good accuracy” (MSI<150) has been calculated

for each tool, adding the results from Tables 2, 3 and 4 (”Tables 2 - 4”) etc.]

Table 5 sums up the results obtained. Overall, we observe that ANOVA
and t-test have the lowest sensitivity, whilst ICA is the tool with the highest
sensitivity. The same observations can be made regarding the accuracies of
the tools. It is interesting to note that even under the two experimental
conditions for which ANOVA and the t-test were conceived (tables 2 and 3),
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it performs less well than ICA. The paired t-test has a high accuracy but
a lower sensitivity than ICA just like PCA. However, each tool may detect
operons not identified by the other tools.

The results obtained by testing the five statistical tools show us that ICA
has overall the best performance.

In this paper we have set out to describe a simple and efficient protocol
to compare the reliability of different statistical tools available for microar-
ray analyses. The criterion used in our method is based on the expression
coherence of genes belonging to the same operon. The method is objective,
reflects a biological reality and is not bound to one, particular set of experi-
mental conditions. It allows to compare the sensitivity, the accuracy and the
detection of false positives of different statistical tools.

Here we have used this method to compare statistical tools applied to the
analysis of differential gene expression. However, the above protocol can also
be applied without modification to compare the statistical tools developed for
other types of transcriptome analyses, like the study of gene co-expression.

References

[Callow et al., 2000]M. J. Callow, S. Dudoit, E. L. Gong, T. P. Speed, and E. M.
Rubin. Microarray expression profiling identifies genes with altered expression
in hdl-deficient mice. Genome Res, pages 2022–9., 2000.

[He et al., 2003]Y. D. He, H. Dai, E. E. Schadt, G. Cavet, S. W. Edwards, S. B.
Stepaniants, S. Duenwald, R. Kleinhanz, A. R. Jones, D. D. Shoemaker, and
R. B Stoughton. Microarray standard data set and figures of merit for compar-
ing data processing methods and experiment designs. Bioinformatics, pages
956–65., 2003.

[Heyer et al., 1999]L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring expression
data: identification and analysis of coexpressed genes. Genome Res, pages
1106–15., 1999.

[Pan, 2002]W. Pan. A comparative review of statistical methods for discovering
differentially expressed genes in replicated microarray experiments. Bioinfor-

matic, 2002.
[Reiner et al., 2003]A. Reiner, D. Yekutieli, and Y. Benjamini. Identifying dif-

ferentially expressed genes using false discovery rate controlling procedures.
Bioinformatics, pages 368–75., 2003.

[Sabatti et al., 2002]C. Sabatti, L. Rohlin, M. K. Oh, and J. C. Liao. Co-expression
pattern from dna microarray experiments as a tool for operon prediction. Nu-

cleic Acids Res, pages 2886–93., 2002.
[Sekowska et al., 2001]A. Sekowska, S. Robin, J. J. Daudin, A. Henaut, and

A. Danchin. Extracting biological information from dna arrays: an unexpected
link between arginine and methionine metabolism in bacillus subtilis. Genome

Biol, pages 0019.1–0019.12, 2001.
[Troyanskaya et al., 2002]O. G. Troyanskaya, M. E. Garber, P. O. Brown, D. Bot-

stein, and R. B. Altman. Nonparametric methods for identifying differentially
expressed genes in microarray data. Bioinformatics, pages 1454–61., 2002.


