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Abstract. We considered the suitability of the methods for joint modelling of
mean and dispersion for prediction based on large data sets under the assumption
of normally distributed errors. Methods that seemed capable of handling a problem
with 25 explanatory variables and 100000 observations were compared in predicting
the strength of steel in a real data set collected from the production line of a
steel plate mill. A neural network model for mean and dispersion gave the best
prediction. The results indicate that neural networks are suitable for joint modelling
of mean and dispersion in large data sets.
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1 Introduction

Joint modelling of mean and dispersion is a common problem in statistics.
In many real problems, not only mean but also variance and even other mo-
ments of the conditional distribution of the response variable depend on the
explanatory variables. In these cases, dispersion modelling is needed to pre-
dict the conditional distribution realistically. The variance model has often
been employed to make mean model estimation more efficient. In many appli-
cations, including industrial quality improvement experiments, the variance
function itself has been the focus of the interest.

A single observation does not give any information about variance, and
many more observations are needed to estimate a model for variance than a
model for mean. Although joint modelling of mean and dispersion has been
applied in many fields, applications to large data sets seem to be lacking. The
different methods for joint modelling of mean and dispersion have not been
compared to each other, and their prediction abilities and suitability to large
data sets are rather unclear. This paper gives insight into the suitability of
different methods proposed for joint prediction of mean dispersion based on
large data sets. The models are compared for their accuracy in predicting
the mean and variance of the strength of steel plates using a real data set
with about 25 explanatory variables and 100000 observations.
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2 Joint modelling of mean and dispersion

We denote the observations of the response variable with Y =
(y1, y2, . . . , yN)T and let xi = (xi1, xi2, . . . , xip) denote the values of the p
explanatory variables of the ith observation. We assume that yi are nor-
mally, independently distributed yisimN(µi, σ

2

i ), with both the mean µi(xi)
and the variance σ2

i (xi) depending on the explanatory variables. Joint mod-
elling of mean and dispersion can be divided into two tasks: estimation of the
mean function and estimation of the variance function [Carroll and Ruppert,
1988]. In the iterative estimation method, the mean function is estimated
with weighted least squares by keeping the variance model fixed and by using
weights proportional to the inverses of the predicted variances. The variance
function is then estimated by keeping the mean model fixed [Carroll and
Ruppert, 1988]. There has been controversy as to the number of iterations
needed. Sometimes good results have been obtained using only one iteration
[Yu and Jones, 2004], and two iterations have often been considered best [Car-
roll and Ruppert, 1988]. Simple models can be estimated without iteration
using full maximum likelihood or restricted maximum likelihood (REML).

The selection of the response for dispersion model fitting is not obvious
because direct measurements of variance cannot be made without replication.
Natural measurement of the variance is provided by the squared residual
ε̂2

i = (yi − µ̂(xi))
2. Fitting of the mean model biases the estimation of

the variance function because the fitted model always adapts itself to the
estimation data. This bias can be corrected by modifying the response: for
example, in a regression context the response ε2

i /(1 − hii), where hii are the
diagonal elements of the hat matrix, corresponds to the REML estimation
and leads to unbiased fitting [Smyth et al., 2001]. If the fit can be expressed

using a smoother matrix, Ŷ = SY , the expectation of a squared residual
in the estimation data is Eε̂2

i = σ2

i − 2Siiσ
2

i +
∑N

j=1
S2

ijσ
2

j + (µi − Eµ̂i)
2

[Ruppert et al., 1997]. Defining ∆ = diag(2S − SST) and assuming the fit
to be conditionally unbiased, the result motivates the ∆-corrected response
ri = ε̂2

i /(1 − ∆i).
The learning method, i.e. model type and estimation method, is another

major selection problem in dispersion modelling. In principle, most of the
learning methods can be used for modelling dispersion. If the residuals are
normally distributed, εisimN(0, σ2

i ), then the squared residuals are gamma
distributed, ε2

i simGamma(σ2

i , 2), and the fitting can be based on gamma log-
likelihood. For most other possible responses (e.g. |ei| or log |ei|) no such
helpful result is available, and the least squares method has been commonly
used.

3 Methods

Heteroscedastic regression (HetReg), mean and dispersion additive models
(MADAM), local linear regression for mean and dispersion (LLRMD) and
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neural network modelling of mean and dispersion (NNMMD) were compared
in a real data set. The estimation data were collected from an industrial
process of steel plate production and consisted of 90 000 observations. Two
response variables were measured from finished products; tensile strength
and yield strength, both being approximately normally distributed. In the
modelling, 27 explanatory variables related to the steel plate production pro-
cess and likely to have an effect on the responses were used. The explanatory
variables were related to the concentrations of alloying elements, the thermo-
mechanical treatments made during the process of production and the size
and shape of the plate and the test specimen. In the modelling of variance,
12 of the explanatory variables with a likely effect on the conditional variance
were used. [Myllykoski, 1998] has studied the reasons affecting the variance
in the strength of thin steel sheets.

The fitting of models was accomplished using the iterative approach.
First, the model for mean was fitted, and the variance model was then fitted
based on the corrected or uncorrected squared residuals from the mean model
fit. In the optional second iteration, the mean model was weighted with the
inverses of the predicted variances, and the variance model was fitted again.
The parameters of the mean model were estimated with the least squares,
and the parameters of the variance model were estimated with the gamma
log-likelihood or least squares. For the models MADAM and NNMMD the
likelihoods were penalised. A linear link was used for the mean and a square
root link or log link for the variance.

The test data set was collected from the production line after the training
data set and consisted of 25 000 observations. The prediction accuracies
of the models were compared using the negative log-likelihood of the test
data set under a gaussian assumption. Variance predictions smaller than
16 (including negative predictions) were transformed to 16; otherwise, single
bad predictions could have blurred the results.

Heteroscedastic linear regression is a simple method, which can be easily
applied to large data sets [Smyth et al., 2001]. We used a heteroscedastic
regression model of the form

f(µi) = z̃T

i β
g(σ2

i ) = zT

i τ (1)

where the link functions f and g define the relationship between the linear
predictors and the mean and variance, respectively. The input vectors z̃i

and zi include transformations and product terms of the original explanatory
variables to allow non-linear effects and interactions between the explanatory
variables. We made the model selection manually based on the prediction
accuracy in the validation data set. The selected mean models included about
110 terms and the dispersion models about 25 terms. The model estimation
was carried out using the iterative REML of [Smyth et al., 2001].

Generalised additive models are known to be able to handle large data
sets pretty well [Hastie et al., 2001]. [Rigby and Stasinopoulos, 1996] pro-
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posed mean and dispersion additive models for joint modelling of mean and
dispersion. We used an additive model resembling the model of [Yau and
Kohn, 2003] and allowing two-way interactions

f(µi) =

p∑

j=1

hj(xij) +

p∑

j=1

p∑

k=1

hjk(xik, xij)

g(σ2

i ) =

p∑

j=1

kj(xij) +

p∑

j=1

p∑

k=1

kjk(xik, xij). (2)

The functions hj(·) and kj(·) were linear functions or univariate penalised
regression splines with 10 knots. The functions hij(·) and kij(·) were zero
functions or two-dimensional penalised regression splines with 10 knots se-
lected out of 100 candidates. The estimation of the smoothing parameters of
the different terms was accomplished using generalised cross-validation cri-
teria. The non-zero terms of the models (about 50 in the mean models and
15 in the variance models) were selected using a simple algorithm, which
expands the model by adding terms that improve the model’s performance
significantly in a validation data set.

In local methods, the whole set of estimation data serves as the model,
and prediction is based on the nearest neighbours of the query point. Local
linear regression was proposed for joint modelling of mean and dispersion
by [Ruppert et al., 1997]. [Yu and Jones, 2004] improved the method by
proposing that the variance is estimated by minimising the local gamma
likelihood instead of the sum of squares. They also used a link function
g(t) = log (t) for variance in local estimation, leading to

µ̂i = â

(â, β̂) = arg mina,β

N∑

j=1

(yj − a − (xj − xi)
Tβ)2K1

( ||xj − xi||

h1

)

σ̂2

i = g−1(ĉ)

(ĉ, τ̂) = arg minc,τ

N∑

j=1

[ ε2

j

g−1(c + (xj − xi)Tτ)
+ log g−1(c + (xj − xi)

Tτ)
]

·K2

( ||xj − xi||

h2

)
. (3)

Here, K1 and K2 are kernel functions and the bandwidths h1 and h2 are
chosen independently. The suitability of local methods to high-dimensional
problems has been questioned, because the distances between the neighbour-
ing points grow rapidly with the number of dimensions and the local neigh-
bourhood becomes too sparse [Hastie et al., 2001]. We used the local likeli-
hood method of [Yu and Jones, 2004] with the Epanechnikov quadratic kernel
Kλ(x0, x) = 3

4
(1−|x−x0|/λ)2I(|x−x0| < 1). A simple adaptive bandwidth,

which gives positive weights to a constant number (few thousands) of estima-
tion data instances, was used. The model selection task was simplified to the
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selection of a suitable number of neighbours to be used in prediction, which
was decided on the basis of performance in validation data.

Neural networks are known as a flexible modelling method with good
predictive performance in large data sets [Hastie et al., 2001]. We fitted
neural network models for mean and dispersion. The idea is not completely
new, see [Myllykoski, 1998]. We used single-layer perceptron model with
skip-layer connections of the form

f(µi) = xT

i β +

h∑

j=1

fj(x
T

i βj)

g(σ2

i ) = xT

i τ +
h∑

j=1

gj(x
T

i τj) (4)

where the activation functions fj(·) and gj(·) are logistic e−t/(1 + e−t). We
fitted the variance model by maximising the penalised gamma log-likelihood
related to squared residuals of the mean model. Model selection consisted
of selecting the number of hidden neurons h and selecting the smoothing
parameter. Different models were tested and the model that worked best
in the validation data was selected. We modelled variance using single-layer
perceptrons with 10 and 15 hidden neurons.

4 Results

We compared the prediction accuracy of joint modelling of mean and disper-
sion using the negative log-likelihood in the test data set T

-log-lik =
1

2

∑

i∈T

ln 2πσ̂2

i +
1

2

∑

i∈T

(yi − µ̂i)
2

σ̂2

i

. (5)

It can be easily seen that the gamma log-likelihood of the dispersion model
is equivalent to the likelihood of the whole model when the mean model is
kept fixed. Thus, the comparison of dispersion models by keeping the mean
model fixed can be based on the full likelihood. For the comparison of mean
models, the root mean squared errors rMSE =

√
ave(ε̂2) are also presented.

Table 1 shows the achieved prediction accuracies of the different methods
for joint modelling of mean and dispersion in the test data set. To compare
especially the dispersion models, we fixed the mean models to the fitted
neural network models and fitted the dispersion models using the squared
residuals. The results are presented in Table 2.

The basic method for fitting the dispersion model was to use the response
ε2

i /(1 − ∆i) and the square root link function and to fit the model using
gamma likelihood without iterating the mean model and variance model es-
timation. Some alternatives for the basic setting were tested: effects are
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model Tensile strength Yield strength

rMSE -log-lik rMSE -log-lik
HetReg 9.25 95125 14.39 108399
MADAM 9.67 95837 14.28 108172
LLRMD 9.23 95468 14.09 107800
NNMMD 8.95 94442 13.90 107482

Table 1. Prediction accuracy in the test data set.

model Tensile S. Yield S.

HetReg 94410 107646
MADAM 94726 107623
LLRMD 94593 107514
NNMMD 94442 107482

Table 2. The negative log-likelihoods (the smaller, the better) in the test data set
when the mean model was kept fixed.

model Tensile strength Yield strength

ε
2 gaussian log-link weighted ε

2 gaussian log-link weighted
HetReg 0 -56 -24 +61 0 -303 -6 +187
MADAM -36 -2050 -375 +117 +12 -643 +13 -665
LLRMD -80 -68 · · -27 -73 · ·

NNMMD · -350 +30 +251 · -230 -185 -211

Table 3. The differences in test data log-likelihood between the standard fitting
method and the alternatives. The plus sign means that the alternative gave better
likelihood in the reduced test data set.

presented in Table 3. Using the response e2 had only a small effect on the
results; prediction accuracy usually decreased. If the parameters were esti-
mated under gaussian likelihood instead of gamma likelihood, the likelihood
of the test data decreased significantly. The effect of a link function was
moderate, in most cases log-link for the variance function gave worse results.
The number of iterations in the joint modelling of mean and dispersion had a
major but fluctuating effect on the results. Usually, the weighted estimation
of the second iteration gave better results when measured using likelihood
but worse results when rMSE was used. The differences in rMSE were 0, -0.10
and -0.02 for tensile strength and +0.04, -0.57 and -0.10 for yield strength
(in the same order as in Table 3). The third iteration changed the results of
the second iteration only slightly, and the differences in log-likelihood were
about 10-20. The subsequent iterations had a very small effect on the results,
the change in log-likelihood being about 1-4.
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In neural network modelling, it was noticeable that a network with skip-
layer connections was much better than an ordinary single-layer perceptron
without skip-layer connections. For yield strength the difference in log-
likelihood was 800 and for tensile strength 1300. The use of log-link for
variance with local likelihood fitting caused convergence problems at several
prediction points, and log-link could thus not be used. Constant bandwidth
seemed to work poorly; the difference in log-likelihood with the adaptive
bandwidth was about 2000. We did not try the weighted version of local
linear modelling, because too large computations would have been needed.

The computational requirements of modelling methods are a focus of in-
terest when prediction is based on large data sets. We tested the computa-
tional needs using R software (http://www.r-project.org/) installed on a
SunOS unix machine with 15 Gb of memory. The CPU power used in the
computation was 900 MHz. R is known to be fast but to use memory ineffi-
ciently. The observed need for memory and computation time for fitting the
model for strength are shown in Table 4. The time needed to produce 25000
predictions for the test data set is also presented. We used a simple model
selection algorithm for each case; the approximate computation times used
by the model selection procedures are also presented in Table 4.

Fitting Prediction Model selection Memory need (Mb)
HetReg 1 min < 1 min 15 h 800 Mb
MADAM 70 min < 1 min 12 h 3500 Mb
LLRMD 70 h 20 h 240 h 400 Mb
NNMMD 120 min < 1 min 10 h 400 Mb

Table 4. The required computational resources for applying different methods to
the strength of steel data.

5 Discussion

The results on the predictive performance of the models in predicting the
distribution of the strength of steel plates are presented. This is the first
extensive comparison of the methods for joint modelling of mean dispersion
in a real prediction problem.

Modification of the response in dispersion model fitting with ∆-corrections
to take into account the effect of estimating the mean model has a small effect
on prediction. In heteroscedastic regression with a large number of observa-
tions, ∆-corrections have practically no impact, but the effect increases with
the complexity of the model. We suggest that good results are obtained with
an uncorrected response, but if the ∆-corrections are easily available, the
corrected response should be used.

The traditional log-link ensures the positivity of predicted variance, but
it did not perform very well in our case study. Log-link implies that the
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explanatory variables have a multiplicative effect on variance, which is not
necessarily a rational assumption. We suggest that a linear model for variance
and a linear model for deviation should be also considered when selecting link
function.

Iteration of mean model estimation and variance model estimation in-
creases the computation time needed for model fitting. Our results agree
well with the earlier results claiming that two iterations are needed, and the
subsequent iterations have only a minor effect on the results. In our data
set, the first iteration also gave pretty good results. Our suggestion is to
use two iterations. We compared two loss functions in variance function esti-
mation; least squares and gamma log-likelihood. Least squares yielded poor
results, which was expected, as the distribution of squared residuals is far
from normal.

A wide variety of learning methods can be used for modelling dispersion,
and the choice of the model type has a great influence on the accuracy of
the prediction. The results suggest that neural networks are included among
the methods that provide a suitable model framework for joint prediction
of mean and dispersion based on large data sets. The fitting of additive
spline models to large data sets requires a huge amount of memory, which
makes them difficult to use. Local linear modelling is time-consuming, and it
may not be applicable to real-time applications. Heteroscedastic regression
models are appropriate when simplicity and interpretability are required.
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