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Abstract. In this paper we use tools of classical statistical estimation theory in
finding a suitable estimator of the population mean using auxiliary information
when some observations in the sample are missing. We study model and design
properties of the proposed estimator. We also report the results of a wide simulation
study on the efficience of the estimator which reveals very promising results.
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1 Introduction

Missing data is a common problem in virtually all surveys. Frequently, survey
sampling is conducted to gather complete information on all sampling units
but, due to a variety of reasons, for a fraction of the subjects, either no data
at all is available or information on one or more variables is missing. Missing
data can contribute to bias in the estimates and make the analyses harder to
conduct and results harder to present.

The most frequently used method to compensate for item non response
is imputation (see [Little and Rubin, 1987]). Some statistics specialists are
reluctant to apply this method because it manipulates the original infor-
mation. Many empirical studies do not follow this approach. They simply
discard all the sampling units with missing values and employ the usual infer-
ence procedures, which can produce that the actual sample size was less than
the planned one, biases in estimations and increases in sampling variance if
missing data follows any pattern.

Contending that the deleted observations may contain valuable informa-
tion, an alternative approach is to try to improve the precision of the esti-
mators by including all cases available for their calculation.
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In this paper we propose a prediction approach to deal with the presence
of missing data. Specifically, we address the case where only the value of the
variable of interest is missing for some subjects, and the value of the auxiliary
variable is missing for other distinct subjects. We propose a new estimator
for the mean of the variable of interest, using all known data for principal
and auxilary variables.

2 Estimation with auxiliary information and missing

data

Indirect estimation methods are easily comprehensible techniques for the esti-
mation of total population in survey sampling when an auxiliary characteris-
tic correlated with the study characteristic is available; see, e.g., [Singh, 2003],
[Sampath and Chandra, 1990], [Srivastava and Jhajj, 1981]. These methods
of estimation assume that the sample data contains no missing observations.
This specification may not be tenable in many practical applications; see;
e.g., [Rubin, 1977].

Some authors have defined indirect estimators when the sample is drawn
by a simple random sampling without replacement when some observations
are missing and the population mean of auxiliary characteristic is available
(see [Tracy and Osahan, 1994], [Toutenburg and Srivastava, 1998] and [Rueda
and González, 2004]).

There appears to be no effort reported in the literature when both the
asumptions are violated simultaneously (some observations are missing in
both variables and the population mean of the auxiliary variable is not
known). We will consider this situation under a general sampling design.

Let be a population,U , of N units from which a random sample, s, of fixed
size, n is drawn according to a noninformative sample design d = (Sd, Pd),
with first order inclusion probabilities πi. For this sample we observe the
values of two variables, (yi, xi), i = 1, . . . , n, for the estimation of some
parameters of variable y.

We assume that only a set of (n−p−q) complete observations on selected
units in the sample are available. In addition to these, observations on the
x characteristic on p units in the sample are available but the corresponding
observations on the y characteristic are missing. Similarly, we have a set
of q observations on the y characteristic in the sample but the associated
values on the x characteristic are missing. Further, p and q are assumed to
be integer numbers verifying 0 < p, q < n/2.

For the sake of simplicity, we separate the unit of the sample s into three
disjoint sets:

s1 = {i ∈ s/xi, yi are available}
s2 = {i ∈ s/xi are available, but yi is not}
s3 = {i ∈ s/yi are available, but xi is not}
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Prediction theory for sampling surveys can be considered as a general
framework for statistical inference on the characteristics of finite populations.
The prediction approach is based on this idea: for any given s ∈ Sd of size n
we can write:

Y = fsys + (1 − fs)ys̃ (1)

where fs = n/N is the sampling rate, ys =
∑

s Yk/n is the mean for units in
the sample, and ys̃ =

∑
s̃ Yk/(N − n) is the mean for the nonsample units.

In this representation of the mean, the sample mean ys is known, and
then we attempt a post survey prediction of the mean ys̃ of the nonsurveyed
units.

Now for any given s ∈ Sd we can write:

Y = fs1ys1 + fs2ys2 + fs3ys3 + (1 − fs)ys̃ (2)

where fs1 =
n − p − q

N
, fs2 =

p

N
, fs3 =

q

N
and fs4 = 1 −

n

N
,

In this representation of the mean, the sample means ys1 and ys3 are
known, thus the problem of predicting Y is equivalent to the problem of
predicting the means ys2 and ys̃.

We denote by Eξ the expected value under the model ξ and Ed the ex-
pected value under the design d. The minimum EξMSEd criterium will be
considered. We only consider the linear and unbiased under model predictors.

Consider any predictor T of Y ; it can be represented, for any given sample
s as:

T = fs1ys1 + fs2U2 + fs3ys3 + (1 − fs)U4 (3)

where U2 and U4 are considered as predictors of ys2 and ys̃ respectively. Tools
of classical statistical estimation theory will be useful in finding the suitable
predictors U2 and U4.

Firstly we study the problem of estimation of ys2. If the predictor T
is of the form 3 and it verify: Eξ(T ) = µ = 1

N

∑
i∈U Eξ(Yi), it is logical

to consider the class of linear estimators U2 with the condition: Eξ(U2) =
µs2 = 1

p

∑
i∈s2 Eξ(Yi). In the sample s2 we do not have the values of the

study characteristic but we have all the values of the auxiliary charasterictic,
x. We now consider the frequently used regression model, where ηi = βxi,
i = 1, ..., N , where β is a unknown quantity. By generalized least squares
theory, the minimum variance linear unbiased under the model estimator of
β is, for a given sample, given by β̂ the sample regression coefficient. Then
we consider the predictor U∗

2
= β̂xs2 that is linear and unbiased under the

model of ys2.
Regarding the estimation of ys̃, there is not any information available in

s4, neither from the study characteristic neither from the auxiliary charac-
teristic, so it is logical to consider the sample mean U∗

4
= ys1

S

s3.

We consider the predictor of Y :
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T ∗ = fs1ys1 + fs2U
∗

2 + fs3ys3 + (1 − fs)U
∗

4 (4)

As Ed(ys1) = Ed(ys3) = 0, T ∗ is a linear ξ-unbiased predictor of Y for
any design d, and therefore the random variable obtained from T ∗ if Yk is
fixed at yk is ξ-unbiased estimator of population mean y. The estimator T ∗

is also asymptotically normal. The proof use the asymptotical normality of
U∗

4
and U∗

2
(see, e.g., Valliant et al., 2000).

Writting

k1 =
n − p − q(N − p)

N(n − p)
, k2 =

q(N − p)

N(n − p)
and k3 =

p

N
the proposed estimator can be expressed as follows:

T ∗ = k1ys1 + k2ys3 + k3β̂xs2 (5)

2.1 Simple random sampling

Next, we are going to consider a simple random sampling without replace-
ment. We are interested in finding the statistical properties of the estimator
with respect to this sampling design.

First, the estimator is unbiased under this design the approximate vari-
ance of T ∗ is

AV (T ∗) = S2

y

[
k2

1a + k2

2b + 2k1k2c
]
+ β2k2

3S
2

xd + 2k3βSxy [k1e + k2f ] (6)

where

a = 1

n−p−q
− 1

N
, b =

1

q
−

1

N
, d =

1

p
−

1

N

c =






1

n − p − q
−

1

N
if

n − p

2
≥ q

1

q
−

1

N
if

n − p

2
< q

e =






1

n − p − q
−

1

N
if

n − q

2
≥ p

1

p
−

1

N
if

n − q

2
< p

f =






1

p
−

1

N
if p ≥ q

1

q
−

1

N
if p < q

A consistent estimator of AV (T ∗) can be simply obtained by substituting
S2

y , S2
x and Syx with their sample values s2

y, s2
x and syx.
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Table 1. Relation between lines type and nonresponse rates

Type of line CASE 1 CASE 2 CASE 3

dotted p = 0.32n p = 0.32n p = 0.4n
q = 0.4n q = 0.48n q = 0.48n

dashed p = 0.4n p = 0.48n p = 0.48n
q = 0.32n q = 0.32n q = 0.4n

3 Simulation study

The next step in our study consists of carrying out a simulation study to re-
veal the behaviour of the proposed estimator. For this purpose, we examined
four populations: Cancer, Co60, Co70 and Hospital (see [Valliant et al.,
2000]).

In order to study the properties of the proposed estimator, the following
process was repeated 1000 times: a simple random sample was selected, for
which in a completely random way the selected proportion of cases for both
variables was removed. The values of the proposed estimator T ∗ and of
the estimator of the simple mean were then calculated. The results of this
simulation are shown in Figure 1, and Table 1 describes the correspondence
between the types of line and the nonresponse rates.

The above Figure represents the log-ratios of the mean squared errors
of both estimators. The simulation results shown that for all the popula-
tions, sampling sizes and nonresponse rates considerated, the behaviour of
the proposed estimator is better than that of the standard one (the sample
mean). Moreover, there is an absence of variation in the error of estimation,
produced by exchanging the proportion of nonresponders between the main
variable and the auxiliary variable. Another interesting feature is that the
precision improves in proportion to the increase in the sample size.

After comparing the T ∗ estimator and the standard estimator of the mean,
we considered it useful to study the relation between the efficiency of the pro-
posed estimator and that of the estimator defined by Toutenburg and Srivas-
tava (1988), under the same conditions. We conclude that the behaviour of
the T ∗ estimator is considerably better than that the Toutemburg estimator
ŷT4.
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Fig. 1. Log ratios of standar error of the predictive estimators over the simple
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