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Abstract. In order to obtain reference curves for data sets when the covariate is
multidimensional, we propose a new methodology based on dimension-reduction
and nonparametric estimation of conditional quantiles. This semiparametric ap-
proach combines sliced inverse regression (SIR) and a kernel estimation of condi-
tional quantiles. The convergence of the derived estimator is shown. By a simula-
tion study, we compare this procedure to the classical kernel nonparametric one for
different dimensions of the covariate. The semiparametric estimator shows the best
performance. The usefulness of this estimation procedure is illustrated on a real
data set collected in order to establish reference curves for biophysical properties
of the skin of healthy French women.
Keywords: Conditional quantiles, Dimension reduction, Kernel estimation, Semi-
parametric method.

1 Introduction

The reference intervals are a tool of some importance in clinical medecine.
They provide a guideline to clinicians seeking to interpret a measurement
obtained from a new patient. Many experiments, in particular in biomedi-
cal studies, are conducted to establish the range of values that a variable of



Reference curves estimation via Sliced Inverse Regression 1485

interest, say Y whose values are in <, may normally take in a target popu-
lation. Here “normally” refers to values that one can expect to see with a
given probability under normal conditions and for typical individuals. The
conventional definition of a reference interval is a pair of numbers that bind,
for example, the central 90% of a set of values obtained from a specified group
of subjects (the reference subjects).

The need for reference curves, rather than a simple reference interval,
arises when a covariate, say X whose values are in <, is simultaneously
recorded with Y . Norms are then constructed by estimating a set of con-
ditional quantile curves. Conditional quantiles are widely used for screen-
ing biometrical measurement (height, weight, circumferences and skinfold)
against an appropriate covariate (age, time). For details, the readers may
refer, for example, to the work of [Healy et al., 1998].

Let α ∈ (0, 1), the conditional quantile of Y given X = x, denoted by
qα(x), is naturally defined as the the root of the equation

F (y|x) = α, (1)

where F (y|x) = P (Y ≤ y | X = x) denotes the conditional distribution
function of Y given X = x. For α > 0.5, the (2α − 1)% reference curves are
defined, when x varies, by

Iα(x) = [q1−α(x), qα(x)].

So, estimating reference curves is reduced to estimating conditional quantiles.
In the last decade a nonparametric theory has been developed in order to

estimate the conditional quantiles. From (1), an estimator of the conditional
distribution induces an estimator of corresponding quantiles. For instance, a
Nadaraya-Watson estimator, F̂n(y|x), can be assigned to F (y|x):

F̂n(y|x) =

n∑

i=1

K{(x − Xi)/hn}I{Yi≤y}

/
n∑

i=1

K{(x − Xi)/hn} , (2)

where hn and K are respectively a bandwidth and a bounded (kernel) func-
tion. The estimator of qα(x) is then deduced from F̂n(y|x) as the root of the
equation

F̂n(y|x) = α. (3)

Many authors are interested in this estimator, see, for mathematical details,
[Samanta, 1989] or [Berlinet et al., 2001]. Note that various other nonpara-
metric methods are explored in order to estimate qα(x). Among them we can
cite the local polynomial, the double kernel, the weighted Nadaraya-Watson

methods.
Although, theoretically, the extension of conditional quantiles to higher

dimension p of X is obvious, its practical success, while depending on the
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number of observations, suffers from the so-called curse of dimensionality.
Further, because reference curves are, in this case, a pair of p-dimensional
hyper-surfaces, their visual display is rendered difficult making it less directly
useful for exploratory purposes (unlike the one-dimensional case). When
p > 2, viewing all the data in single (p + 1)-dimensional plot may no longer
be possible.

Motivated by this, the key is then to reduce the dimension of the predic-
tor vector X without loss of information on the conditional distribution of
Y given X and without requiring a prespecified parametric model. Sufficient
dimension-reduction leads naturally to the idea of a sufficient summary plot
that contains all information on the regression available from the sample.
Moreover, it is a very helpful step in nonparametric estimation for circum-
vening the curse of dimensionality. Methods to reduce the dimension exist
in the literature. For instance, [Stone, 1985] or [Stone, 1986] used additive
regression models to cope with curse of dimensionality in nonparametric func-
tion estimation. [Chaudhuri, 1991] used this technique in order to estimate
conditional quantiles. In this paper, we focus on a linear projection method
of reducing the dimensionality of the covariates in order to construct a more
efficient estimator of conditional quantiles and consequently reference curves.
The specific dimension reduction method used is based on Li’s well known
Sliced inverse regression (SIR), see[Li, 1991] or [Chen and Li, 1998]. From a
computational point of view, SIR is very fast. Note that this method is used
as a pre-step of the main analysis of the data, in order to get an efficient
estimator of conditional quantiles from which we can then deduce reference
curves. It is fairly robust, especially against some outliers in the regressor
observations.

The rest of the paper is organized as follows. In Section 2, we present the
dimension-reduction context and we derive the corresponding semiparametric
estimator of conditional quantiles. We also give an asymptotic result. Simu-
lations are conducted in Section 3 to assess the performance of this estimator
in finite-sample situation. Numerical example involving real data application
is reported in Section 4.

2 Dimension-reduction context and estimation

procedure

2.1 Dimension-reduction context

Suppose that there exists a matrix β such that

Y ⊥ X | βT X, (4)

where the columns of the p × d matrix β (d ≤ p) are linearly independent.
Consequently, in the current study, statement (4) is equivalent to

F (y|x) = F (y|βT x),
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for all values of x in the sample space. Straightforwardly, it follows that

qα(x) = qα(βT x).

The SIR method can be used to estimated a basis of the subspace S(β)
spanned by the columns of β. More details and comments on the SIR esti-
mation procedure can be found in [Li, 1991] or [Chen and Li, 1998].

2.2 Estimation procedure

Let Yi denote the ith observation on the univariate response and let Xi denote
the corresponding p × 1 vector of observed covariate values, i = 1, . . . , n.

• Step 1: SIR estimation step. With SIR method, we get {b̂k}d
k=1, an

estimated basis of S(β). In practice, the dimension d is replaced with an

estimate d̂ equal to the number of singular values that are inferred to be
nonzero in the population, see for example, [Li, 1991] or [Ferré, 1998] for
testing procedure in order to identify d. Moreover, the eigenvalues scree plot
approach used here is a useful explonatory tool in determining the number
d̂ of EDR directions to keep. From a practical point of view, we look for a
visible jump in the scree plot and d̂ is then the number of the eigenvalues
located before this jump. Note that if no jump is detected, no dimension
reduction is possible with SIR approach.

• Step 2: Conditional quantile estimation step. For the sake of conve-
nience, we assume that d = 1 and we use the notation b̂ = b̂1. Using the SIR
estimates and following (2), a kernel estimator of F (y|x) is defined, from the

data {(Yi, b̂
T Xi)}n

i=1, by

Fn

(
y

∣∣∣b̂T x
)

=

∑n
i=1 K{(b̂T x − b̂T Xi)/hn}I{Yi≤y}∑n

i=1 K{(b̂T x − b̂T Xi)/hn}
. (5)

Then, as in (3), we derive from (5) an estimator of qα(x) by

qn,α

(
b̂T x

)
= F−1

n (α | b̂T x). (6)

As a consequence of the above result, for α > 0.5, the corresponding esti-
mated (2α − 1)% reference curves are given by the following

In,α(x) = [qn,1−α(b̂T x), qn,α(b̂T x)], as x varies.

2.2.0.2 Remark. The above definitions have been presented in the context
of single index. A natural extension is to consider the general multiple indices
(d > 1) and to work with {b̂k}d

k=1 and {(Yi, b̂
T
1 Xi, . . . , b̂

T
d Xi)}n

i=1. Then we

use the classical multi-kernel estimation to get qn,α(b̂T
1 x, . . . , b̂T

d x) as in (6).
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2.3 Asymptotic property.

Under usual assumptions, we obtain the consistency of qn,α(b̂T x): for a fixed
x in <p,

qn,α(b̂T x) −→ qα(x) in probability, as n → +∞.

The proof is given in [Gannoun et al., 2004].

3 Simulation study

We study the numerical performances of the proposed method on simulated
data. In particular, we compare our method with the classical nonparametric
estimation method. Let us introduce the following estimators of qα(x):

(a) q
(a)
n,α(x) := qn,α(̂bT x) is the estimator defined in (6).

(b) q
(b)
n,α(x) := qn,α(βT x) has no practical interest, it is only introduced

for the sake of comparison. It is similar to (a) except the dimension-
reduction direction is not estimated but fixed to the theoretical one.

(c) q
(c)
n,α(x) := qn,α(x) is the classical conditional nonparametric quantile

estimator.

The kernels are the densities of the standard normal or multinormal distri-
bution, and the bandwidth is chosen by a cross-validation technique. The
estimated conditional quantiles are computed by numerically inversing the
corresponding conditional distribution function.

3.1 Simulated models

We consider the following regression model Y = f(βT X) + ε, where X fol-
lows the standard multinormal distribution Np(0, Ip) and where ε is normally
distributed εsimN (0, 1) and is independent from X . We examine three situ-
ations:

(M1) p = 3, f(t) = 1 + 2t/3 and βT = 2−1/2[1,−1, 0].

(M2) p = 10, f(t) = 1 + 2t/3 and βT = 3−1[1, 1, 1, 1, 1,−1,−1,−1,−1, 0].

(M3) p = 3, f(t) = 1 + exp(2t/3) and βT = 2−1/2[1,−1, 0].

Our motivation for considering the pair of models (M1,M2) is to investigate
the behavior of the estimation methods when the dimension increases. The
pair of models (M1,M3) is introduced to evaluate the influence of the link
function f on the accuracy of the estimation methods. Let us note that
qα(x) = f(βT x) + Nα, where Nα is the α-quantile of the standard normal
distribution.
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Fig. 1. Boxplots obtained on the three different models with the three different
estimates.

3.2 Evaluation of the results

Our goal is to compare successively the three estimators (a), (b) and (c)
to the true quantile in the situations (M1), (M2) and (M3). To this end,
the N = 100 data sets with size n = 200 are simulated in each of the above
situations. The conditional quantiles are estimated for α = 5% and α = 95%
on a p dimensional grid. This grid is composed of 125 points {z`, ` =
1, . . . , 125} randomly generated with a uniform distribution on [−3/2, 3/2]p.
Then, the performance of the estimators can be assessed on each of the N
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simulated data sets by a mean square error criterion:

E(Θ)
n,α =

1

125

125∑

`=1

(
q(Θ)
n,α(z`) − qα(z`)

)2

, where Θ ∈ {a, b, c}.

The boxplots of the mean square error E
(Θ)
n,α for Θ ∈ {a, b, c} and α ∈

{0.05, 0.95} on each model are represented on Figure 1. Figure 1.1 shows

no difference between the distribution of E
(a)
n,α and E

(b)
n,α. The estimation

of the direction β by b̂ has no significant consequence on the accuracy of
the estimation of the reference curves. On the contrary, results obtained by
the estimators (a) and (c) are very different. The proposed estimator (a)
gives better results than the estimator without dimension-reduction (c). Be-
sides, this difference of quality increases with the number p of covariates (see
Figure 1.3). In this case, the curse of dimensionality becomes an essential
limitation to the use of estimator (c), and thus estimator (a) is particularly
useful in such situations. Note that the quality of the estimation of β is not
severely affected by the covariates number. Finally, in view of Figure 1.2,
the nature of the link function f does not seem to have any influence on the
relative behaviors of the three estimators.

4 Application to real data

4.1 Data

When studying biophysical skin properties of healthy women, knowledge
about the reference “curves” of certain parameters is lacking. The aim is to
establish 90% reference “curves” for some of the biophysical properties of the
skin (here the conductance of the skin) of healthy Caucasian women, on two
facial areas and one forearm area, using the age and a set of covariates. The
data collection was conducted from November 1998 to March 1999 on n = 322
Caucasian women between 20 and 80 years old with apparently healthy skin,
and living in the Ile de France (in around Paris) area. The volunteers were
preselected by a subcontractor company. Each healthy volunteer was exam-
ined at CE.R.I.E.S (“CEntre de Recherches et d’Investigations Epidermiques
et Sensorielles” or Epidermal and Sensory Research and Investigation Centre)
in a controlled environment. This evaluation included self-administered ques-
tionnaires on skin-related habits, a medical examination and a biophysical
evaluation. The age of the volunteer, the temperature and relative humidity
of the controlled environment occur in each study as covariates. The other
available covariates included are some biophysical properties of the skin (as
the the skin temperature or the skin pH).

4.2 Results

We only give here the results for the forearm area. In step 1, the SIR method
gives d̂ = 1 and the corresponding vector b̂. Then in step 2, after a simplifi-
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Fig. 2. Estimated 90%-reference curves for the forearm area.

cation of the index b̂T X (see [Gannoun et al., 2001] or [Gannoun et al., 2004]
for details), we construct the 90% reference curves for the conductance of
the skin (variable named KBRAS) using this estimated index, see Figure 2.
The results of the analysis on the forearm index show that apart from age
five covariates enter in the model: two of these represent the environmental
conditions of the measurements, which is to be expected, the three other
covariates are directly clinically-related with skin hydration: skin pH, capac-
itance and transepidermal water loss. The studies of the two facial areas can
be found in [Gannoun et al., 2001].
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Biométrie, ENSAM-INRA-UMII, 2001.



1492 Gannoun et al.

[Gannoun et al., 2004]A. Gannoun, S. Girard, S. Guinot, and J. Saracco. Sliced
inverse regression in reference curves estimation. Computational Statistics and

Data Analysis, pages 103–122, 2004.
[Healy et al., 1998]M.J.R. Healy, J. Rasbash, and M. Yang. Distribution-free esti-

mation of age-related centiles. Annals of Human Biology, pages 17–22, 1998.
[Li, 1991]K.C. Li. Sliced inverse regression for dimension reduction (with discus-

sion). Journal of the American Statistical Association, pages 316–342, 1991.
[Samanta, 1989]T. Samanta. Non-parametric estimation of conditional quantiles.

Statistics and Probability Letters, pages 407–412, 1989.
[Stone, 1985]C.J. Stone. Additive regression and other nonparametric models. The

Annals of Statistics, pages 689–705, 1985.
[Stone, 1986]C.J. Stone. The dimensionality reduction principle for generalized

additive models. The Annals of Statistics, pages 590–606, 1986.

Acknowledgement: We are grateful to Pr. Denis Malvy, University Bor-
deaux 2, for his advice and clinical expertise, to Pr. Erwin Tschachler for his
encouragement, and to all the CE.R.I.E.S. team for their important contri-
bution to the data.


