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Abstract. In this paper, we propose an algorithm based on Binary Decision Dia-
gram (BDD) for computing all-terminal reliability. It is defined as the probability
that the nodes in the network can communicate to each other, taking into ac-
count the possible failures of network links. The effectiveness of this approach is
demonstrated by performing experiments on several large networks represented by
stochastic graphs. 1
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1 Introduction

A stochastic network is modeled by an undirected graph G = (V, E) where
V is the vertex set and E is the edge set. Sites correspond to vertices and
links to edges. The all-terminal reliability R(G) is the probability that G re-
mains connected assuming all edges can fail independently with known prob-
ability and nodes are perfect. Provan [Provan, 1986] showed that even for
planar graphs this problem is still NP-hard. In literature, two classes of algo-
rithms for computing the network reliability can be distinguished. The first
class deals with the enumeration of all the minimum paths. The inclusion-

exclusion or sum of disjoint products methods have to be applied since this
enumeration provides non-disjoint events. The algorithms in the second class
are factoring algorithms improved by reductions. It consists in reducing the
size of the network while preserving its reliability. When no reduction is
allowed, the factoring method is used. The idea is to choose a component
and decompose the problem into two sub-problems: the first assumes the
component has failed, the second assumes it is functioning. Satyanarayana
and Chang [Satyanarayana and Chang, 1983] and Wood [Wood, 1985] have
shown that the factoring algorithms with reductions are more efficient than
the classical path or cut enumeration method for solving this problem. This
was confirmed by the experimental works of Theologou and Carlier [Theolo-
gou and Carlier, 1991].

1 Acknowledgment: This research was supported by the Conseil Regional de Pi-
cardie.
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This paper is organized as follows. First, we give a brief introduction to BDD
in Section 2. Then, in Section 3 we proposed a description of our method for
computing network reliability. In Section 4, we introduce an other important
reliability measure (Birnbaum importance measure) and its fast computa-
tion via BDD. Next, we present experimental results in Section 5. Finally,
we draw some conclusions and outline the direction of futur works in Section
6.

2 Binary Decision Diagram (BDD)

Akers [Akers, 1978] first introduced BDD for representing boolean function.
Bryant popularized the use of BDD by introducing a set of algorithms for
efficient construction and manipulation of the BDD structure [Bryant, 1992].
Nowadays, BDD are used in a wide range of area, including hardware syn-
thesis and verification, model checking and protocol validation. Their use in
the reliability analysis framework has been introduced by Madre and Coud-
ert [Coudert and Madre, 1992b] [Coudert and Madre, 1992a] and developped
by Rauzy [Rauzy, 1993]. Sekine and Imai were the first to use the BDD
structure in network reliability [Sekine and Imai, 1998]. A BDD is a directed
acyclic graph (DAG) based on Shannon’s decomposition. The Shannon’s
decomposition is defined as follows:

f = xfx=1 + x̄fx=0

where x is one of decision variables and fx=i is the boolean function f eval-
uated at x = i.
The graph has two sink nodes labeled with 0 and 1 representing the two corre-
sponding constant expressions. Each internal node is labeled with a boolean
variable x and has two out-edges called 0-edge and 1-edge. The node linked
by 1-edge represents the boolean expression when x = 1 , i.e fx=1 while the
node linked by 0-edge represents the boolean expression when x = 0, i.e fx=0.
An ordered binary decision diagram (OBDD) is a BDD where variables are
ordered according to a known total ordering and every path visits variables in
an ascending order. Afterwards, BDDs will be considered as ordered. Leaves
of the BDD give the value of f for the assignment corresponding to a path
from the root to the leaf. The size of a BDD structure depends critically on
variable ordering. Finding an ordering that minimizes the size of BDD is also
a NP-complete problem [Friedman and Supowit, 1990].

3 Computing all-terminal reliability

Definitions and notations

A graph G is connected if there exists at least one path between any two
vertices. Our network model is an undirected stochastic graph G = (V, E).
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Fig. 1. Function f(x1, x2, x3) = (x1 ∧ x3)∨ (x2 ∧ x3) represented by its truth table
and BDDs with order: (a) x1 < x2 < x3 and (b): x3 < x2 < x1. A dashed (solid)
line represents the value 0 (1).

Each edge ei of E (i ∈ {1, 2, . . . , m} where m = |E|) can fail independently
with known probability qi (pi = 1 − qi is the functioning probability of ei)
and we consider that vertices of G are perfectly reliable. A state G of the
stochastic graph G is denoted by (x1, x2, . . . , xm) where xi stands for the
state of edge ei, i.e, xi = 0 when edge ei fails and xi = 1 when it functions.
The associated probability of G is defined as:

Pr(G) =

m∏

i=1

(xi.pi + (1 − xi).qi)

At each state G is associated a partial graph G(G) = (V, E′) such that ei ∈ E′

if and only if ei ∈ E and xi = 1. The all-terminal reliability can be define as
follows:

R(G) =
∑

G(G) is connected

Pr(G)

We denote by G∗e the graph G with contracted edge e and by G−e the graph
G with deleted edge e.

Construction of the all-terminal reliability function

Our algorithm follows three steps:

1 The edges are ordered by using a heuristic.
2 The BDD is generated to encode the network reliability.
3 From this BDD, we obtain the all-terminal reliability.

We apply recursively the factoring algorithm in the order of e1, e2, . . . , em in
a top-down way. The computation process can be represented as a binary
tree such that the root corresponds to the original graph G and children
correspond to graphs obtained by deletion /contraction of edges. Nodes in
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the binary tree correspond to subgraphs of G. We use the method introduced
by Carlier [Carlier and Lucet, 1996] for represententing graph by partition.
It is an efficient way for representing graph and finding isomorphic graphs
during the computation process. By sharing the isomorphic subgraphs an
expansion tree is modified as a rooted acyclic graph (therefore a BDD).

Sharing isomorphic graphs

Consider that Ek = {e1, e1, . . . , ek} and Ēk = {ek+1, . . . , em}. The graphs in
the k-th level of the BDD are sub-graphs of G with the edge set Ēk. For each
level k, we define the boundary set Fk as a vertex set such that each vertex of
Fk is incident to at least one edge in Ek and one edge in Ēk. Then we gather
vertices in blocks according the following rule: two vertices s and t of Fk are
in the same block if and only if there exists a path made of functioning edges
linking s to t. For instance in figure 3(a), in the first level, the boundary
set is equal to {a, b}. G∗e1

can be represented by partition [ab] and G−e1

by partition [a][b]. Now, we order partitions in the same level k in order to
identify and stock them in an efficient way. We number the partition from 1
to Bell(|Fk|) where Bell(|Fk|) (known as the Bell number) is the theoretical
maximum number of partitions in level k. This number grows exponentially
with i, consequently the number of classes grows exponentially with the size
of the boundary set. From now on, we only manipulate partitions instead of
graphs during the all-terminal reliability computation.

a

b

c

d

e1

e2

e4

e5

e3

G = (V, E)

a

b

c

d

e1 e4

e5

e3

G1 =< 1, 0,−1,−1,−1 >

a

b

c

d
e2

e4

e5

e3

G2 =< 0, 1,−1,−1,−1 >

(a) (b)

Fig. 2. G(G1) and G(G2) represent sub-graphs in level 2 in the computation process
illustred in figure 3(a). G(G1) and G(G2) has the same partition: [a][d] during the
computation. ei = −1 means the state of ei is not yet fixed.

All-terminal reliability computation

In the previous section, BDD of the all-terminal reliability function was con-
structed. The BDD can be recognized as a graph-based set of disjoint prod-
ucts. Based on the disjoint property of this structure, we can now easily
compute the all-terminal reliability of G. Given the non-failure probabilty pk
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Fig. 3. Graph G and its BDD (b). A dashed (solid) line represents the value 0 (1).
(a) illustrates the computation process of the BDD.

(k ∈ {1, 2, . . . , m}) of edge ek, the all-terminal reliability of a BDD-based
function f can be recursively obtain by:

R(G) = Pr(f = 1) = Pr(xk.fxk=1 = 1) + Pr(x̄k.fxk=0 = 1) (disjoint property)

R(G) = Pr(f = 1) = pk.P r(fxk=1 = 1) + qk.P r(fxk=0 = 1) (independent property)

The reliability is evaluated by traversing the BDD from the root to the leaves.

4 Importance measure

Finding the critical components is also an important issue for reliability anal-
ysis and the optimization design of network topology. The aim is to obtain
information concerning a component’s contribution to the system reliability.
The three most used importance measures are: Birnbaum, Critically and
Fussell-Vesely. We briefly explain here the Birnbaum importance measure.
The Birnbaum importance measure of a component ek is the probability that
a system is in a critical state with respect to ek and that the failure of com-
ponent ek will then cause the system to fail. Here, the Birnbaum importance
measure of edge ek, noted IB

k , is defined as:

IB
k = Pr(fxk=1 = 1) − Pr(fxk=0 = 1)

The figure 4 shows the importance measures for the reliability graph G.

5 Experimental results

Computations are done by using Pentium 4 with 512 MB memory. Our
program is written in C language. The experimental results are shown in
Tables 1 and 2. The unit of time is in second. The running time includes the
BDD generation and the all-terminal reliability computation. The heuristic
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Graph G = (V, E)

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

qk IB

k

0.2849

0.2849

0.1611

0.2285

0.3534

0.1872

0.1497

0.1543

0.2625

0.2625

ek

e1 0.3

e2 0.3

e3 0.3

e4 0.4

e5 0.05

e6 0.4

e7 0.4

e8 0.2

e9 0.3

e10 0.3

ordering: e5,e1,e2,e9,e10,e4,e6 ,e3,e8,e7

Fig. 4. Sensibility analysis of graph G. According to the Birnbaum importance
measure, e5 has the highest degree of contribution to the graph reliability.

used for ordering edges (and so variables in BDD) in the experiments is
known as a breadth-first-search (BFS) ordering. We give two characteristics
of the generated BDD: its size (number of nodes) and its width (if |Wi| is the
number of nodes in the ith level then the bdd width is: maxi |Wi|). |Fmax|
corresponds to the maximal size of the boundary set during the computation
process. The computation speed heavily depends on |Fmax| and so the edge
ordering.

6 Conclusion

A method for evaluating the all-terminal reliability via BDD has been pro-
posed in this paper. Based on this approach, our futur works will focus on
computing other kinds of reliability and reusing the BDD structure in order
to optimize design of network topology.
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