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Abstract. In this paper, we address the problem of evaluating goodness-of-fit
indices in structural equation modeling when corrupted data are considered.
Starting from the introduction of a new method, called MC-SGR, we evaluate the
sensitivity of four different fit indices (two absolute fit-indices: GFI and AGFI,
and two incremental fit-indices: CFI and NNFI) to structured perturbations.
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1 Introduction

The issue of perturbations in real or simulated data has been substantially
neglected in evaluating the adequacy of fit indices used to test covariance
structure modeling. Nevertheless, it is certainly legitimate to wonder whether
fit indices are reliably sensitive to data corruption. In particular, we would
expect that a good index should approach its maximum under correct model
specification and uncorrupted data, but also degrade substantially under mas-
sive data perturbation. In this paper we provide a possible methodological
solution to the problem of evaluating the sensitivity of fit indices in structural
equation modeling when perturbed data are considered. In particular, in our
study the sensitivity of four different fit indices (two absolute fit-indices: GFI
and AGFI, and two incremental fit-indices: CFI and NNFI) to perturbed data
is examined in three different factorial models. The sensitivity evaluation is
carried out by means of a new integrated approach which combines standard
Monte Carlo (MC) simulations and a recent data generating procedure called
Sample Generation by Replacements (SGR, [Lombardi et al., 2004]).

The paper is organized as follows. Section 2 outlines the integrated MC-
SGR approach. Section 3 describes the simulation study for evaluating the
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goodness-of-fit indices under perturbed data scenarios. In Section 4 we dis-
cuss results of the simulation study. Finally, Section 5 reports some conclud-
ing remarks.

2 Integrated approach: MC + SGR

In this section we describe how to integrate the SGR procedure with MC
simulations in order to evaluate the sensitivity of fit-indices in structured
scenarios of data perturbation.

2.1 Generating data replacements: the SGR method

We think of the full dataset as being represented by an n×m matrix D (that
is, n observations, each containing m elements), of which a certain portion
Dc is actually represented by corrupted-data (corruption due to possibly
fake data points in D). The corrupted-portion Dc of D together with the
uncorrupted portion Du of D, constitutes the full data set, that is to say D =
Dc∪Du. The general idea is the following: under the assumption of % ≤ n×m
corrupted data points in D, we replace some portions D1, . . . ,Ds of D, each of
which contains exactly % elements, with new components Xr

1
, . . . ,Xr

s in such
a way that for all h = 1, . . . , s, all the corresponding elements in Xr

h and Dh

are different. The exact uncorrupted portion Du is assumed to be unknown
and only the value of % is supposed to be known. Moreover, all entries in D

are also assumed to be equally likely in the process of replacements. In the
SGR approach the final step consists in analyzing the complete new datasets
X1, . . . ,Xs (with Xh = Xr

h ∪ Du
h; h = 1, . . . , s).

2.2 Extended MC simulations

Usually, in a Monte Carlo experiment, a hypothesized model is used to gen-
erate new data under various conditions. Therefore, the simulated data are
used to evaluate some characteristics of the model. This, of course, implies
that the distribution of the random component in the assumed model must
be known, and it must be possible to generate pseudorandom samples from
that distribution under the desired conditions planned by the researcher. In
order to evaluate the impact of perturbed data on fit-indices we ought to
generate for each MC simulated data Dk (k = 1, . . . , t) a family R(Dk, %)
of SGR perturbed data matrices with exactly % replacements. Therefore, we
may think of each new perturbed data X ∈ R(Dk, %) as an alternative “in-
formative scenario” which is directly derived from the original simulated MC
sample Dk. Next, the behavior of a target fit-index can be evaluated with
respect to the perturbed samples. In this case, of course, the distributional
properties of the fit-index are not those that simply hold under a particular
model hypothesis (like for standard Monte Carlo simulation studies); rather
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they are the properties under a model whose parameters corresponds to val-
ues fitted from both the MC generating process and the structured collection
of perturbed samples that are generated from the given MC data sets.

3 Simulation study

In this simulation study, four fit-indices were examined with respect to struc-
tured perturbation of data. Of the four indices, two were absolute fit-indices
(Goodness of Fit Index, GFI, and Adjusted Goodness of Fit Index, AGFI
[Jöreskog and Sörbom, 1994]), and two incremental fit-indices (Comparative
Fit Index, CFI [Bentler, 1990], and Nonnormed Fit Index, NNFI [Bentler and
Bonnett, 1980] or TLI [Tucker and Lewis, 1973]). In this evaluation, three
different types of target models were involved.

3.1 Target Models

We selected three target models that [Paxton et al., 2001] considered were
commonly encountered in applied research (see Figures 1, and 2). The first
model, Model 1, contained nine measured variables and three latent factors.
Each variable loaded on a single factor. Further, Factor 2 was regressed on
Factor 1, and Factor 3 was regressed on Factor 2. The second model, Model
2, had the same basic structure as Model 1 but contained 15 measured vari-
ables, with five indicators per factor. Finally, Model 3 contained 13 measured
variables with the same measurement structure as Model 1 (three indicators
per factor) but added four observed exogenous variables. Factor 1 depended
on all four correlated exogenous variables.

Parameter values were chosen on the basis of effect size (R2 values) and
statistical significance. For Model 1, the primary factor loadings were set
to a standardized value of .70 (with R2 = .49). The regression parameters
among the latent factors were set to a standardized value of .60 (R2 = .36).
For Model 2, all the values were exactly the same as those of Model 1 except
for the addition of two measured variables per factor. Finally, for Model
3, we included four exogenous variables. The primary factor loadings were
set to .87, .82 and .72 for the first, the second and the third latent factor,
respectively.

3.2 Simulation design

The following procedural steps were repeated for each target model Mj (j =
1, 2, 3).

i ) According to Mj , 1000 raw-data sets D
j
k with n = 50 observations were

generated. Next, each D
j
k (k = 1, . . . , 1000) was discretized on a 5-point

scale using the method described by [Jöreskog and Sörbom, 1996].
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Fig. 1. Model [1]: nine observed variables and three factors. Model [2]: 15 observed
variables and three factors.
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Fig. 2. Model [3]: 13 observed variables (four exogenous and nine endogenous) and
three factors.
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ii ) For each discretized matrix D
j
k we computed its polychoric correlation

matrix and, subsequently, used this correlation matrix as input for Mj .
iii ) Then the one hundred best fitting discretized matrix were selected by

applying the following criteria: Chi-square not significant, Standard-
ized Root-Mean-Square Residual (SRMR) < .09, Comparative Fit index
(CFI) > .96, Nonnormed Fit Index (NNFI) > .95 [Hu and Bentler, 1999].

iv ) For each best fitting data B
j
h (h = 1, . . . , 100) we generated a family

R(Bj
h, %) of 50 SGR perturbed data matrices with exactly % replacements.

The exact number % of replacements varied as a factor with 10 different
levels l = 1, 2, . . . , 10. Each level l denoted the proportion (l × 10)/100
of replacements with respect to the size of the data set.

v ) Each perturbed data matrix X ∈ R(Bj
h, %) was subjected to model Mj

and the four fit-indices were finally evaluated. The whole procedure gen-
erated a total of 50000 new perturbed data matrices X for each target
model.

4 Results

Table 1 reports the percentage of Converging Solutions (CS) and Acceptable
Solutions (AS) as a function of percentage of replacements for the three
considered models1. As expected, the percentage of CS decreased with larger
percentage of replaced elements. A similar pattern was also observed for AS.

Percentage of Replacements
model 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 92.40 62.82 28.54 12.16 7.44 6.68 7.00 6.52 6.46 6.80
2 99.68 89.76 50.38 15.24 6.14 3.20 3.52 3.86 3.08 2.72 CS
3 79.44 52.42 24.94 7.58 2.50 1.92 1.68 1.62 1.56 1.76

1 85.50 47.46 15.04 4.02 1.76 1.40 1.38 1.26 1.14 1.50
2 99.36 83.18 39.20 9.88 3.06 1.58 1.60 1.98 1.38 1.34 AS
3 79.44 52.42 24.94 7.58 2.50 1.92 1.68 1.62 1.56 1.76

Table 1. Percentage of Converging Solutions (CS) (resp. Acceptable Solutions
(AS)) as a function of percentage of replacements.

Figure 3 shows the means of GFI and AGFI for the three models. Seg-
ments represent standard deviations2. Dashed lines represent the cutoff op-
timal value (.95). Although both indices were constantly less than .95, the
GFI (resp. AGFI) mean appeared not to be affected from increasing levels of
replacements. Furthermore, very surprisingly, the means of GFI and AGFI
increased with larger percentage of replaced elements.

1 All our analysis were based on the Maximum Likelihood estimation algorithm.
2 For the evaluation of the fit-indices we considered only AS.
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Fig. 3. Means of GFI and AGFI as a function of percentage of replacements. Seg-
ments represent standard deviations.
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Fig. 4. Means of Comparative Fit Index (CFI) as a function of percentage of re-
placements. Segments represent standard deviations.
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Figure 4 shows the means of CFI as a function of percentage of replace-
ments for the three models. The dashed line indicates the cutoff optimal value
(.96). By increasing the percentage of replacements, CFI means decreased
and, in general, variability increased. The pattern associated to Model 1
showed that this model was less sensitive to replacements than both Model
3 and Model 2, the latter being the most sensitive to percentage of replace-
ments. Notice that the same patterns were shown also by GFI and AGFI.
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Fig. 5. Distributions of Nonnormed Fit Index (NNFI) as a function of percentage
of replacement.

Finally, Figure 5 depicts the distributions of Nonnormed Fit Index (NNFI)
for the three models. Remember that a model is a good one, when NNFI
ranges between .95 and 1. Unlike both GFI and AGFI, NNFI was very
sensitive to increasing levels of replacements. This observation is supported
by the fact that a very large proportion of values fell outside the acceptable
range [.95-1].
Table 2 reports the proportion of NNFI values within the range [.95-1]. We
may notice a strong relationship between replacements and NNFI values. For
example, in Model 1, we observed less than 10% of acceptable NNFI values,
when 20% of replacements were considered.

5 Concluding remarks

A dominance relation can be read from Figures 3 and 4 as follows M2 �

M3 � M1, where X � Y denotes that X is more sensitive to perturbations
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Percentage of Replacements
model 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 14.85 8.72 3.72 2.99 3.41 0.00 0.00 1.59 7.02 4.00
2 6.96 1.64 0.71 0.61 0.65 0.00 1.25 0.00 0.00 0.00
3 4.41 2.56 1.20 0.53 0.80 1.04 1.19 1.23 0.00 0.00

Table 2. Percentage of NNFI in the range [.95-1] as a function of percentage of
replacements.

than Y . Overall our results suggested that the performance of the models
were sensitive to perturbed data sets. This effect was stronger in the second
model as it showed a clear replacement effect. In general, we recommend
to choose more sensitive criteria (like NNFI) in order to better evaluate the
effect in the model of eventual fake data.

Future applications of this methodology may be used in evaluating the
robustness of goodness-of-fit criteria in empirical data set. However, more
reasonable replacement scenarios based on external knowledge about pro-
cess corruption should limit the upper bound of replacements. For example,
in a personnel selection context the maximal number of fake answers in a
personality questionnaire could be limited to 30%.
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