
Empirical comparison of Arcing algorithms

Riadh Khanchel and Mohamed Limam

I . S . G
41, Avenue de la Liberté
Le Bardo,2000 Tunis, Tunisie
(e-mail: riadh.khanchel@isg.rnu.tn)

Abstract. Adaboost and Arc-x(h) are two ensemble algorithms that belong to
Arcing family of algorithms. They use different weight updating rules and combine
classifiers using different voting scheme. For h = 4, Arc-x(h) performs equally
well as Adaboost but higher values of h were not tested. Previous methods used
to compare algorithms are based on the performance over test sets. A different
approach presented by [Nadeau and Bengio, 2003] takes into account variability
in training and test sets. Using this approach, an empirical study is conducted
to compare Adaboost and Arc-x(h) for different values of h. Results show that
increasing h does not affect the performance of Arc-x(h) whichis comparable to
Adaboost.
Keywords: Boosting, Arcing, Adaboost.

1 Introduction

Different classification algorithms have been proposed and used in fields like
medicine, business and finance. However, the accuracy of these algorithms
may be moderate when applied to complex classification tasks. Ensemble
learning is a technique for improving their performance: a collection of mod-
erately accurate and diverse classifiers are constructed then they are com-
bined in order to output highly accurate ones. Different ensemble learning
algorithms have been proposed: Adaboost [Freund and Schapire, 1997], Bag-
ging [Breiman, 1996], and Arcing [Breiman, 1998].
Ensemble learning method is developed within the framework of probably
approximately correct (P. A. C) model of learning where learning algorithm
and hypothesis are used to refer to, respectively, classification algorithm and
classifier. This model of learning is specified by a set of measurement space,
a label space, an error parameter ε, a confidence parameter δ and other pa-
rameters that specify the size of the measurement space and the label space.
After running for a polynomial time, the learning algorithm outputs a hy-
pothesis which error is less than ε with probability 1 − δ: this is a P.A.C.
hypothesis.
Two extensions to this learning model are strong and weak learning algo-
rithms. Both algorithms run in a polynomial time. The strong learning
algorithm outputs a hypothesis that is P.A.C while the weak one outputs a
hypothesis with accuracy better than 0.5. The question of whether these two

1434 Khanchel and Limam

notions are equivalent is referred to as the ”hypothesis boosting problem”
since in order to show this equivalence we must boost the accuracy of the
weak learning algorithm.
The proof that these notions are equivalent is provided by [Schapire, 1990],
who presents the first algorithm for converting a weak learning algorithm into
a strong one. Based on this idea, Boost-By-Majority, a simpler and more ef-
ficient boosting algorithm, is developed by [Freund, 1995]. This algorithm
suffers from practical problem for estimating parameters. Adaboost, the first
adaptive boosting algorithm, is developed by [Freund and Schapire, 1997].
This algorithm does not require parameter estimation.
Arcing family of algorithms denotes algorithms that Adaptively Resample
data and Combine classifiers [Breiman, 1998]. Adaboost belongs to this fam-
ily. Arc-x(h) is an ad-hoc algorithm developed by [Breiman, 1998] to better
understand the behaviour od Adaboost. This algorithm uses a simple weight
updating rule and a different method for combining hypotheses. For h = 4
Arc-x(h) performs better than h = 1 or 2.When compared to Adaboost, Arc-
x4 performs equally well. However Breiman argues that higher values for h
are not tested so further improvement is possible [Breiman, 1998].
In this paper, different values for the parameter h of Arc-x(h) algorithm are
tested and their performance are compared to Adaboost and Arc-x4 in the
reweighting framework using C4.5 [Quinlan, 1993] as classification algorithm.
In section two, Adaboost and Arc-x(h) are introduced then results of pre-
vious empirical study are reviewed. In section three, the general framework
of this empirical study is presented: classification and boosting algorithms,
datasets and performance measure. Results are presented in section four.
Finally, section five provides a conclusion to this work.

2 Arcing Algorithms

Adaboost and Arc-x(h) belongs to the Arcing family of algorithms. In this
section, these algorithms are presented then results of previous empirical
studies are reviewed.

2.1 Adaboost

Adaboost applies a classification algorithm to a dataset composed with
labelled instances for a fixed number of iterations T . In each iter-
ation t, t = 1, . . . , T , a weight, wt(Zi), is assigned to each instance
Zi = (xi, yi), i = 1, . . . , n in the dataset. It represents instance’s importance.
Based on this weight distribution, a classifier is outputted which predicts
the class of each instance. Adaboost requires that the weighted error is less
than 0.5. A parameter αt is used to update the weights and to measure
classifier’s performance. The weight of misclassified instances is increased in
order to force the algorithm to concentrate on them in the next iteration.

Empirical comparison of Arcing algorithms 1435

At the end of the process, a final classifier is obtained by combining classifiers
from previous iterations using weighted majority vote. The parameter αt

represents the weight of classifier ht generated in iteration t. The pseudocode
of Adaboost for binary classification is presented in table 1.

Algorithm:Adaboost algorithm

Given: {Z1 = (x1, y1), . . . , Zn = (xn, yn)} where xi ∈ X, yi ∈ Y = {−1; +1}
1-Initialize w1(Zi) = 1/n for i = 1, . . . , n.
2-For t = 1 to T:

•Train the algorithm using wt and get a classifier
ht : X 7→ {−1;+1}
• Compute εt =

P

i:ht(xi) 6=yi
wt(Zi)

• If εt ≥ 0.5 stop.

• Choose: αt = 1
2

ln(1−εt

εt
)

• Update: wt+1(Zi) = wt(Zi) exp(−αtyiht(xi))
Nt

where Nt is a normalization factor

3-output the final hypothesis: H(x) = sign(
PT

t=1 αtht(x))

Table 1. Adaboost algorithm for binary classification

2.2 Arc-x(j)

Arc-x(h) algorithm is developed by [Breiman, 1998] to study the behaviour
of Adaboost. It is different from Adaboost in the following:

• it uses a simpler weight updating rule:

wt+1(Zi) =
1 + m(Zi)

h

∑

(1 + m(Zi)h)
, (1)

where m(Zi) is the number of misclassifications of instance Zi by classi-
fiers generated in iterations 1, . . . , t and h is an integer.

• classifiers are combined using simple majority vote.

1436 Khanchel and Limam

2.3 Previous results

Empirical results show that Adaboost improves the performance of various
classification algorithms, often by dramatic amount. Adaboost decreases the
average error rate by 55.2% when applied to decision stump, a weak learning
algorithm [Freund and Schapire, 1996]. Boosted decision stump performs
equally well as C4.5 [Quinlan, 1993], a strong learning algorithm: Adaboost
converts a weak learning algorithm into a strong one.
The ability of Adaboost to improve strong learning algorithm is investigated
by [Freund and Schapire, 1996] and [Quinlan, 1996]. Experimental results
show that Adaboost improves the average error rate.
Arc-x4 is tested on moderate and large data sets by [Breiman, 1998]. Re-
sults show that it improves the performance of CART [Breiman et al., 1984]
learning algorithm for all data sets.
Two different frameworks are considered by [Bauer and Kohavi, 1999] to test
the performance Arc-x4: reweighting and subsampling. Subsampling uses
the weight of instances to generate a different training set in each iteration
while reweighting uses a fixed training set for all iterations. Arc-x4 produces
a higher error reduction in the subsampling framework than in the reweight-
ing framework.
Adaboost and Arc-x4 are compared in different framework and using differ-
ent collections of datasets. Arc-x4 has an accuracy comparable to Adaboost
without using the weighting scheme to construct the final classifier [Breiman,
1998] and [Bauer and Kohavi, 1999].
Arc-x(h) is tested for h = 1, 2, 4 by [Breiman, 1998]. However higher values
of h are not tested so improvement is possible. Based on the performance
measure used by [Bauer and Kohavi, 1999], increasing the factor h does not
improve the performance of Arc-x(h) [Khanchel and Limam, to appear].

3 Empirical Study

In this section, the general framework of our empirical study in presented:
classification algorithm, Arcing algorithms and data sets. The performance
measure criterion is presented. Then performance of the different algorithms
is compared.

3.1 General framework

C4.5 [Quinlan, 1993] is used as subroutine for the different boosting algo-
rithms. In order to compare different boosting algorithms, a collection of
data sets from UCI Machine learning Repository [Keogh and Merz, 1998] is
used. Details of these data sets are presented in table 2.

Different values of the parameter h, h ∈ {5, 6, 8, 12}, are tested for the
algorithm Arc-x(h). Results are compared to Adaboost and Arc-x4 in the
reweighting framework . Boosting algorithms are applied for 25 iterations.

Empirical comparison of Arcing algorithms 1437

Data set number of instances number of attributes number of classes

Liver disorders 345 7 2
Heart 270 13 2
Australian 690 14 2
Pima 760 8 2

Table 2. Data sets used in the empirical study

3.2 Performance measure

The performance boosting algorithms is usually evaluated using test error.
This criteria takes into account only variability due to the choice of the test
set. Comparison is often made without using rigorous statistical framework
[Nadeau and Bengio, 2003]. Often it uses liberal estimators and leads to
incorrect claims. A new method which takes into account variability due to
the choice of training sets and test sets is presented by [Nadeau and Bengio,
2003]. The goal is to estimate the generalization error using the training
data.
Given a data set Zn of size n, a training set of size n1 is generated from
this data set. Using Zn1 a classifier is generated. The loss incurred by this
classifier on a new example Zn+1 can be expressed by L(Zn1 ; Zn+1). We are
interested in estimating n1

µ = E[L(Zn1 , Zn+1].
To achieve this, we proceed as follows: suppose that the data set Zn is
composed with n labelled instances Zn = {Z1, . . . , Zn}. For m = 1, . . . , M ,
Zn is randomly splitted into 2 distinct subsets Dm and Dc

m each of size n/2.
For each subset, we repeat the following process for j = 1, . . . , J :

• Let Sj be a set of random index of size n1, n1 = 4n/10, chosen from
{1, . . . , n/2} and let Sc

j of size n2 = n/10 denote its complement.
• Let Zj = {Zi/i ∈ Sj} be the training set and Zc

j = {Zi/i ∈ Sc
j} be the

test set.
• For j = 1, . . . , J , use Zj to generate a classifier, and let L(j, i) be:

L(j, i) = QA(Zj , i) − QB(Zj , i) (2)

where QA (QB) is the loss observed on instance i when the algorithm A
(B) uses Zj to generate classifiers.
For classification problem, this loss can be expressed as:

QA(Zj , i) =

{

1 if instance i is incorrectly classified,
0 otherwise.

(3)

• First we average over the test set Zc
j of size n2 to obtain:

µ̂j =
1

n2

∑

i∈Sc
j

L(j, i). (4)

1438 Khanchel and Limam

• Then we average over J to obtain:

n2

n1
µ̂J =

1

J

J
∑

j=1

µ̂j (5)

This process is repeated for Dc
m and for m = 1, . . . , M . Each of the M split

yields a pair (n2

n1
µ̂J ,n2

n1
µ̂c

J) which can be denote as (µ̂m, µ̂c
m).

The generalization error n1
µ is estimated using n2

n1
µ̂J and its variance is esti-

mated using:

n2

n1
σ̂2

J =
1

2M

M
∑

m=1

(µ̂m − µ̂c
m)2. (6)

Since n2

n1
µ̂J is the mean of Jn2 loss L(j, i), its distribution can be approxi-

mated by the normal distribution:

n2

n1
µ̂J −n1

µ
√

n2

n1
σ̂2

J

. (7)

Using this assumption we can perform inference about the performance of
boosting algorithms using confidence interval. A confidence interval for n1

µ
at confidence level 1 − α has the following form:

n1
µ ∈ [n2

n1
µ̂J − c

√

n2

n1
σ̂2

J , n2

n1
µ̂J + c

√

n2

n1
σ̂2

J] (8)

where c is a percentile from N(0,1) distribution.

4 Results

For each pair of algorithms and for each dataset we construct a confidence
interval at confidence level 95%. If this interval includes zero, we conclude
that both algorithms have comparable performance. Confidence interval are
presented in table 3. Algorithms producing the same error rate are omitted.
The important observations for this empirical comparison are:

• For 3 data sets: Pima, Heart and Australian, Arc-x(h) outputs the same
test error in all iterations and for different values of the parameter h.
When compared to Adaboost, the confidence interval is:

– [−0.1197, 0.0371] for the Australian data and [−0.0689, 0.1775] for
the heart data. For these 2 data sets, we conclude that all algorithms
have comparable performance.

– [−0.0365,−0.0073] for Pima data. Adaboost performs slightly better
that Arc-x(h) algorithms

Empirical comparison of Arcing algorithms 1439

data sets algorithms compared confidence intervals

Australian Arc-x(h) - Adaboost,h ∈ {4, 5, 6, 8, 12} [-0.1197, 0.0371]

Heart Arc-x(h) - Adaboost, h ∈ {4, 5, 6, 8, 12} [-0.0688, 0.1775]

Pima (diabetes) Arc-x(h) - Adaboost, h ∈ {4, 5, 6, 8, 12} [-0.0365, -0.0073]

Puba (liver disorder) Arc-x(h)- Arc-x4, h ∈ {5, 6, 8, 12} [-0.0440, 0.0990]
Arc-x4 - Adaboost [-0.0976, 0.0214]

Arc-x(h) - Adaboost [-0.0227, 0.0014]

Table 3. Confidence intervals for difference of generalization error for different
Arcing Algorithms

• For Bupa data, Arc-x(h) outputs the same test error in all iterations for
h = 5, 6, 8 and12. Arc-x4 outputs a slightly lower test error. This differ-
ence is not significant because the confidence interval at 95% confidence
level is [−0.044, 0.099]. Adaboost has a comparable performance to the
different arc-x(h) algorithm: the confidence interval when compared to
Arc-x4 is [-0.0976, 0.0214] and [-0.0227, 0.0014] when compared to the
other Arc-x(h) algorithms.

5 conclusion

This empirical study is an extension to Breiman’s study [Breiman, 1998] of
the family of Arcing algorithms. Different values of the parameter h used by
Arc-x(h) algorithm in the weight updating rule are tested and compared to
Adaboost in the reweighting framework. The approach proposed by [Nadeau
and Bengio, 2003] is adopted: performance measures take into account vari-
ability due to the training sets and test sets and comparisons are made using
confidence intervals.
Based on this empirical study, increasing the factor h used by Arc-x(h) in
the weight updating rule does not improve performance. Arc-x(h) performs
equally as Adaboost for different values of h. Adaboost performs slightly
better for only one data set.
Comparable performance is obtained using two different methods for com-
bining classifiers. This agree with Breiman’s claim that the error reduction
is due to the weight updating rule.
The size of the data sets used in this empirical study is moderate. The frame-
work proposed by [Nadeau and Bengio, 2003] uses small fractions of these
data sets as training and test sets. Also the process generates many training
data then averages the performance. This can explain the comparable per-
formance of the different boosting algorithm considered. It will be interesting
to test these algorithms on large data sets where large training and test sets
can be generated.

1440 Khanchel and Limam

References

[Bauer and Kohavi, 1999]E. Bauer and R. Kohavi. An empirical comparison of vot-
ing classification algorithm: Bagging, boosting and variants. Machine Learn-

ing, pages 105–142, 1999.
[Breiman et al., 1984]L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone.

Classification and Regression Trees. Chapman anf Hall, London, 1984.
[Breiman, 1996]L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140,

1996.
[Breiman, 1998]L. Breiman. Arcing classifiers. The annals of statistics, 26(3):801–

849, 1998.
[Freund and Schapire, 1996]Y. Freund and R.E. Schapire. Experiments with a new

boosting algorithm. In machine learning: Proceedings of the thirteenth inter-

national conference, pages 148–156. Morgan Kaufmann San Francisco, 1996.
[Freund and Schapire, 1997]Y. Freund and R.E. Schapire. A decision-theoretic gen-

eralization of on-line learning and an application to boosting. Journal of Com-

puter and System Sciences, 55(1):119–139, 1997.
[Freund, 1995]Y. Freund. Boosting a weak learning algorithm by majority. Infor-

mation and Computation, 12(2):256–285, 1995.
[Keogh and Merz, 1998]C. Blakes E. Keogh and C.J. Merz. Uci repository of ma-

chine learning databases http://www.ics.uci.edu/ mlearn/ mlrepository.html.
1998.

[Khanchel and Limam, to appear]R. Khanchel and M. Limam. Empirical compar-
ison of boosting algorithms. Springer-Verlag, to appear.

[Nadeau and Bengio, 2003]C. Nadeau and Y. Bengio. Inference for the generaliza-
tion error. Machine Learning, 52(2):239–281, 2003.

[Quinlan, 1993]J.R. Quinlan. C4.5: Programs for machine learning. Morgan Kauf-
mann, 1993.

[Quinlan, 1996]J.R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence and the Eighth Inno-

vative Applications of Artificial Intelligence Conference, pages 725–730, Menlo
Park, August4–8 1996. AAAI Press / MIT Press.

[Schapire, 1990]R.E. Schapire. The strength of weak learnability. Machine Learning,
5(2):197–227, 1990.

