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Abstract. We present long memory processes related to some point processes, give
their main properties, asymptotic behaviour and discuss some statistical issues with
a view on Internet traffic measurements. The Infinite Source Poisson model is a
generalisation of the M/G/∞ queue. Arrivals are driven by a homogeneous Poisson
process, durations of active periods are independent and identically distributed
(iid) and independent of the arrivals. Each active periods (say dowload sessions)
is assumed to have a constant transmission rate and the available bandwidth to be
unlimited. Theses rates are iid, independent of the arrivals but possibly depending
on the durations. In a traffic modelling context, the obtained process X(t) can serve
for modelling the bandwith occupation, often called the workload. The stability of
the model depends on the tail behavior of the duration distribution. Both in the
stable and unstable cases, the tail behavior of the durations can be recovered from
the dependence structure of X(t). In particular, heavy-tails durations will result
in long range dependence (LRD) in X(t) and the corresponding tail and Hurst
indices α and H satisfy H = (3−α)/2 for all α ∈ (0, 2). In practical situations, the
process X(t) is observed through passive measurements, by counting packets going
trough a point of the network, and then by evaluating the instantaneous workload.
Such measurements are much simpler than collectiong complete characterizations
of flows. However, from a queuing point of view, as mentionned above about the
stability, the important parameter is α. The object of this paper is to rely on the
relationship between α and H for estimating α from measurements on X(t).
Keywords: Infinite Source Poisson Model, Heavy tails and long range dependence,
Traffic modelling.
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1 Modelling transmission rates

We consider the Infinite Source Poisson model with random transmission rate
defined by

X(t) =
∑

j∈N

Uj1{tj≤t<tj+ηj} . (1)

The transmissions are generated at birth times {tj} which are the points of
a unit rate homogeneous Poisson process on the positive half-line and have
rates given by {Uj} . The transmissions have positive durations {ηj}. We
assume that the vectors {(ηj , Uj)} are i.i.d. and independent of the arrivals
process. The workload at time t is the sum of rates of all surviving present
and past transmission. This model was considered by [Resnick and Rootzén,
2000], [Mikosch et al., 2002] among others.

In the following, we consider that the path of the process is observed
along continuous time. From a numerical point of view, since the path of X
is piece-wise constant, this means that one observes all the jump times and
the workload at these times. In practical situations, the transmission rate is
measured by counting the packets going through some point of the network
link. From the packet counts, one may compute the overall average rate of
transmission over equi-spaced time slots [kδ, (k + 1)δ] k ∈ Z. From now on,
we take δ = 1 without loss of generality. The process X is not aimed to
model the traffic at packets level since the transmission rate at the packets
level cannot be assumed to be constant. Nevertheless

Yk =

∫ k+1

k

X(s) ds

is a reasonable model for the overall transmission rate averaged on [k, k + 1]
because, by locally averaging the instantaneous rate, one eliminates local
variations of it. The estimator we will consider is computed from the wavelet
coefficients of X . In the case of Haar wavelet these coefficients can be com-
puted exactely from the discrete sequence {Yk, k ∈ Z}. Otherwise, some
adaptations are needed but we will not pursue in this direction here and thus
will assume either that the continuous time path of X is observed or that the
wavelet ψ used below is the Haar wavelet ψ = 1

2 (1[0,1) − 1[1,0)).
We now introduce the assumption on the joint distribution of the trans-

missions rates and durations.

Assumption 1 The random vectors {(η, U), (ηn, Un), n = 0,±1,±2, . . .}
are i.i.d. with distribution ν on R+ ×R and independent of the homogeneous

Poisson Point Process on the real line with points {tj}j∈Z; there exist a real

number α ∈ (0, 2) and a positive integer k∗ such that E[|U |k
∗

] < ∞ and for

each integer k = 0, 1, . . . , k∗

E
[

Uk1{η>t}

]

= Lk(t)t−α . (2)

where Lk are slowly varying as t→ +∞.
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Defining, for each k ≤ k∗, the signed measure on R+

νk(dv) :=

∫

ukν(dv, du),

and the function

Hk(t) = νk(t,∞) = E
[

Uk1{η>t}

]

, t ≥ 0,

Condition (2) is equivalent to saying that Hk, k = 0, 1, . . . , k∗, are regularly
varying with index α.

Assumption 1 implies in particular that the tails of the distribution of η is
regularly varying with index α. This in turns implies Assumption 1 if U and
η are independent, in which case the functions Lk differ by a multiplicative
constant. A more realistic situation for network traffic modelling is the case
where the transmission rate U is independent of the amount of transmitted
data during the download session (which is equal to W := Uη), given that the
rate is above some threshold. Below this threshold, the accessible amount of
data is supposed to have light tails, and above this threshold, W is supposed
to have heavy tails. In practice this threshold separate high rate connections
(say, xDSL/LAN/Cable connection) from low rate connections (say, RTC
connection), which are not suitable for downlaoding large data. In this case,
it can be shown that the measure νk inherits the heavy tails of W for all k
such that E|U |k <∞.

2 Stationary version and asymptotic behavior

If E[η] <∞, a stationary version of this process is defined by

XS(t) =
∑

j∈Z

Uj1{tj≤t<tj+ηj} t ∈ R, (3)

where, in the sequel, {tj} are the points of a unit rate homogeneous Poisson
process on the line such that tk < tk+1 for all k and t−1 < 0 ≤ t0.

By Karamata’s Theorem, for all such k, we easily obtained the asymptotic
equivalences of standard tail behaviors of νk. For instance, if α > 1,

E
[

Uk{η − t}+

]

sim
1

α− 1
Lk(t)t1−α . (4)

Proposition 1 Let Assumption 1 hold. The process XS is well defined and

strictly stationary if and only if E[η] < ∞. If moreover k∗ ≥ 2, then XS is

weakly stationary with expectation and autocovariance function given by

E[XS(t)] = E[Uη] ,

cov(XS(0), XS(t)) = E[U2(η − t)+]sim
1

1 − α
L2(t)t

1−α if α > 1 ,
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where the equivalence holds as t→ +∞.

The process X is nonstationary with expectation E[X(t)] = E[U(η ∧ t)] and

autocovariance function given, for s ≤ t by

cov(X(s), X(t)) = E[U2{s− (t− η)+}+] =

∫ t

t−s

H2(v)dv .

If α ∈ (0, 1) and if t and s tend to infinity at the same rate, the following
asymptotic equivalent of cov(X(s), X(t)) holds. For all t, s > 0, as T → ∞,

cov(X(Ts), X(T t))sim
1

1 − α
L2(T )T 1−α{(s ∨ t)1−α − |t− s|1−α} . (5)

The proof of Proposition 1 is a straightforward application of well known
properties of Poisson point processes.

If E[η] <∞, the non-stationary processX converges to XS . By definition,
the difference between X and XS is given by

XS(t) −X(t) =
∑

k<0

Uk1{tk≤t<tk+ηk}, t ≥ 0 .

Since E[η] <∞ and since the ηk are i.i.d and independent of the birth times
tk, a Borel-Cantelli argument yields that this sum has almost surely a finite
number of terms, which is at most the number of indices k < 0 such that
tk+ηk ≥ 0. Hence, almost surely, limt→∞{XS(t)−X(t)} = 0. This limit also
holds in the mean E[|XS(t) −X(t)|] ≤ E[|U |(η − t)+] → 0. The asymptotic
behavior of the cumulative workload is now investigated.

If we are not in the stable case, that is, for E[η] = ∞, the process XS is
not defined (see Proposition 1). We may still consider the weak limit of the
cumulative workload but this limit will be very different in the two cases as
shown by the next proposition.

For α < 1 (implying E[η] = ∞), the next proposition gives a straightfor-
ward extension of the results of [Resnick and Rootzén, 2000] to the case of
random transmission rate Uj . In the case α > 1 (implying E[η] <∞), it has
been proved under slightly different assumptions by [Mikosch et al., 2002],
[Maulik et al., 2002] or [Mikosch and Resnick, 2004].

Proposition 2 Denote H = (3 − α)/2. If 0 < α < 1, i.e. 1 < H < 3/2,
and if Assumption 1 holds with k∗ = ∞, then the sequence of processes

{L
−1/2
2 (T )T−H

∫ Tt

0 (X(s)−E[X(s)]) ds, t ≥ 0} converges weakly to the Gaus-

sian process W with autocovariance function

cov(W (s),W (t)) =
1

1 − α

∫ t

0

∫ s

0

{(u ∨ v)1−α − |u− v|1−α} du dv .

If 1 < α < 2, i.e. 1/2 < H < 1, then T−H
∫ Tt

0
X(s)ds converges in

probability to 0, and the sequence {T−1/α
∫ Tt

0
(X(s) − E[X(s)]) ds, t ≥ 0}

converges weakly to an α-stable Levy process.



1412 Faÿ et al.

This proposition illustrates a change of behavior between the stationary
and non-stationary cases.

3 Estimation

3.1 Terminology

The most important parameter for this process is thus the parameter α. In
accordance with the notation in use in the context of long memory processes,
we define the Hurst index of the process X as H = (3 − α)/2, because the
variance of partial sums scales as T 2H . We can also define d = H − 1/2 =
1 − α/2, in relation to fractionally integrated processes, such as ARFIMA
processes, but this would be quite arbitrary in this context where no fractional
integration is involved.

3.2 Methods

The parameter α is a tail index, so traditional methods to estimate a tail
index could be used. But it is well known that these methods are not very
efficient in the case of dependent data (cf. [Resnick and Stărică, 1995] for
instance). Moreover, in the model under consideration here, α is not the tail
index of the marginal distribution of the observed process, which has finite
variance whereas α < 2. Thus it is not at all clear how to use these methods.

But as shown by Proposition 1, the coefficient α is related to the second
order properties of the process: the coefficient H = (3 − α)/2 can be viewed
as its Hurst index, i.e. H governs the rate of decay of the autocovariance
function of the process. Therefore it seems natural to use an estimator of the
Hurst index.

3.3 The (wavelet) coefficients

Let ψ be a bounded R → R function with compact support included in [0,M ]
and such that

∫

ψ(s) ds = 0 . (6)

For integers j ≥ 0 and k ∈ Z, define

ψj,k(s) = 2−j/2ψ(2−js− k). (7)

The wavelet coefficients of the path are defined as

dj,k =

∫

ψj,k(s)X(s) ds , dS
j,k =

∫

ψj,k(s)XS(s) ds . (8)

Asume that a path is observed between time 0 and T . Since ψj,k has support
in [k2j , (k+M)2j ], the above coefficients can be computed for all (j, k) such
that T 2−j ≥ L and k = 0, 1, . . . , T2−j −M .
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Lemma 1 Define

L(z) = zα

∫ ∞

0

[

∫ ∞

−∞

{∫ t+zv

t

ψ(u) du

}2

dt

]

ν2(dv) . (9)

Then L is slowly varying at infinity and

E[dS
j,k] = 0 , var(dS

j,k) = L(2j) 2(2−α)j , (10)

E[dj,k] = O
(

L1(k2
j) 2(3/2−α)jk−α

)

, (11)

var(dj,k − dS
j,k) = O

(

L2(k2
−j) 2(2−α)j k−α

)

. (12)

Remark 31 The coefficients dj,k are centered in the case where U and η are

independent and U is centered, even in the nonstationary case.

3.4 The estimator

Lemma 1 provides the rationale for the following minimum contrast estimator
of α which is related to the local Whittle estimator, cf. [Künsch, 1987],
[Robinson, 1995b]. The obtained estimator has been introduced by Moulines,
Roueff and Taqqu (2004) and is called the wavelet Whittle estimator. For
positive integers J0 < J , define

∆ = {(j, k) , J0 < j ≤ J , 0 ≤ k ≤ 2J−j − 1} and δ =
1

#∆

∑

(j,k)∈∆

j .

The scale index J is the maximal scale index available from the data while
J0 is a cut-off tuned by the user. The local Whittle estimator of α is then
defined as:

α̂ = arg min
α′∈(0,2)

log





∑

(j,k)∈∆

d2
j,k

2(2−α′)j



 + δ log(2)(2 − α′) .

Equivalently, we could have defined Ĥ = (3 − α̂)/2 or d̂ = 1 − α̂/2.

Theorem 31 Let α ∈ (1, 2) and let Assumption 1 hold. Suppose that

L(x) → 1 as x → ∞. If J0 → ∞, J → ∞ and J0 < J/α then α̂ is a

consistent estimator of α.

A corresponding results hold in the case where α ∈ (0, 1] but some adap-
tations are needed in the definition of the estimator and a second vanishing
moment is needed on ψ.
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4 Simulations

We have simulated M/G/∞ processes, which correspond to the process X
with Uk = 1 for all k’s, and estimated α via different classical estimators of
long range dependence. The obtain paths are represented in Figure 1 and
Figure 2, respectively in non-stable (α = 0.7 < 1) and stable (α = 1.5 > 1)
situation. Monte-carlo simulations provided the boxplots and MSE estimates
for the several estimators, also represented on these figures. In those graphs,
the X-coordinates V 1, V 2, ... V 10 correspond to the scale cut-off V J0.

Fig. 1. α = 0.7: the process do not converge to a stationary. Its cumulative load
is approximately gaussian.
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Fig. 2. α = 1.5
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