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Abstract. Linear systems of equations, with uncertainty on the parameters, play
a major role in various problems in economics and finance. In this paper fuzzy
linear systems of the general form A1x + b1 = A2x + b2, with A1, A2, b1 and b2

matrices with fuzzy elements, are solved by means of a nonlinear programming
method. The relation between this methodology and the algorithm proposed in
[Muzzioli and Reynaerts, 2004] is highlighted. The methodology is finally applied
to an economic and a financial problem.
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1 Introduction

Several problems in economics and finance boil down to the solution of a
system of linear equations. When we only have some vague knowledge about
the actual value of the parameters, it may be convenient to represent some
or all of them with a fuzzy number. For such a fuzzy linear system Ax = b,
where the elements aij of the n∗n matrix A and the elements bi of the n-vector
b are fuzzy numbers, the following solutions have been proposed: the classical
solution XC , the vector solution XJ and the marginal solutions XE and XI

(see [Buckley and Qu, 1991]). In [Muzzioli and Reynaerts, 2004] this method
is extended to the more general fuzzy system of equations A1x+b1 = A2x+b2,
with A1, A2, b1 and b2 matrices with fuzzy elements. Further it is proved
that the systems Ax = b and A1x + b1 = A2x + b2 have the same vector
solution if A1 − A2 = A and b2 − b1=b. Finally an algorithm to find the
vector solution, is introduced.

The aim of this paper is to investigate the solution of the fuzzy linear
system by means of a nonlinear programming method and to highlight the
relation between this methodology and the algorithm proposed in
[Muzzioli and Reynaerts, 2004].

The plan of the paper is the following: in section 2 we recall the vector
solution XJ and the algorithm in order to get this solution. In section 3 we
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show that the algorithm boils down to a nonlinear programming problem and
we work out the Kuhn-Tucker conditions. In section 4 we apply the method
to several examples. The last section concludes.

2 The vector solution of the fuzzy system

A1x + b1 = A2x + b2

A (triangular) fuzzy number f is defined by three numbers (f1, f2, f3). An
α-cut, α ∈ [0, 1], of f is the interval [f(α), f(α)], with:

f(α) = (1 − α)f1 + αf2 f(α) = (1 − α)f2 + αf3

In [Muzzioli and Reynaerts, 2004] we prove that the system Ax = b (where
A is a n∗n- matrix of fuzzy numbers and b a n-vector of fuzzy numbers) and
all linear systems A1x + b1 = A2x + b2, where A1 − A2 = A and b2 − b1 = b,
have the same vector solution XJ , as defined by [Buckley and Qu, 1991] if
all matrices A(0) with A(0)ij ∈ aij(0) are nonsingular.

The α-cuts of XJ are the following sets:

XJ(α) = {x ∈ R
n | A(α)x = b(α), A(α)ij ∈ aij(α), b(α)i ∈ bi(α)}

The marginals of XJj , j = 1, 2, . . . , n, are obtained by projecting XJ on the
coordinate axes. In the same paper we consider the following simple algo-
rithm which finds directly the marginals of the vector solution XJ for each
unknown. One solves 2n(n+1) systems, for each α-cut, where each element
of the extended coefficient matrix of those systems is either the lower or the
upper bound of the α-cut of the corresponding element of the original fuzzy
extended coefficient matrix. The final solution for each unknown, is investi-
gated by taking the minimum and the maximum of the solutions found in each
system for this unknown. Since for all parameters aij , bi, [aij(α1), aij(α1)] ⊂
[aij(α1), aij(α1)] and [bi(α1), bi(α1)] ⊂ [bi(α1), bi(α1)] if α1 > α2, the mini-
mal (resp. maximal) value of x∗

k(α1) is always greater (resp. smaller) then
the minimal value of x∗

k(α2) and thus [x∗

k(α1), xk(α1)
∗] ⊂ [x∗

k(α2), xk(α2)
∗].

This has as concequence that x∗

k(1) ∈ [x∗

k(0), x∗

k(0)], for all k and thus
the solution of the algorithm is always a fuzzy number. This procedure
ensures that all possible solutions, consistent with the parameters of the
system, are taken. A simplification of the previous method is to find the
solutions for α = 1 and α = 0 and impose ex post a triangular form on the
solution, whenever xj(1) ∈ [xj(0), xj(0)], for all j. In order to find xj(1),
for all j, one just solves the crisp system, substituting α = 1 in the fuzzy
system. In order to find [xj(0), xj(0)], for all j, one applies the algorithm
for α = 0. If xj(1) ∈ [xj(0), xj(0)], for all j, then one takes as solution the
triangular fuzzy numbers (xj(0), xj(1), xj(0)).
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3 The nonlinear programming method

The algorithm can be considered as n nonlinear programming problems
where:

• the object functions, x∗

k(b1, . . . , bn, a1,1, . . . , ann), k = 1, 2, . . . , n are the
solutions of the system of equations considered as functions of the coef-
ficients,

• with constraints:

b1(α) ≤ b1 ≤ b1(α) . . . bn(α) ≤ bn ≤ bn(α)

a1,1(α) ≤ b1 ≤ a1,1(α) . . . an,n(α) ≤ an,n ≤ an,n(α)

The object functions should as well be minimized as maximized to find the
extremes of the α-cuts of the solution.

The Kuhn-Tucker conditions should be verified for extrema. The La-
grange functions are the following for all k = 1, 2, . . . n:

Lk(b1, . . . , bn, a1,1, . . . , ann) = x∗

k(b1, . . . , bn, a1,1, . . . , ann

− λ1(b1 − b1(α)) − . . . − λn(bn − bn(α))

− λn+1(a1,1 − a1,1(α)) − . . . − λn(n+1)(ann − ann(α))

The (necessary) Kuhn-Tucker conditions for a maximum (resp. minimum)
are:

bi(α) ≤ bi ≤ bi(α) (bi − bi(α))
∂Lk

∂bi
= 0,

∂Lk

∂bi
≤ 0 (resp. ≥ 0),

λi
∂Lk

∂λi
= 0, λi ≥ 0 (resp. ≤ 0), ∀i = 1, 2, . . . , n

aij(α) ≤ aij ≤ aij(α) (aij − aij(α))
∂Lk

∂aij
= 0,

∂Lk

∂aij
≤ 0 (resp. ≥ 0),

λi∗n+j
∂Lk

∂λi∗n+j
= 0, λi∗n+j ≥ 0 (resp. ≤ 0), ∀i, j = 1, 2, . . . , n

Since the partial derivatives are:

∂Lk

∂bi
=

∂x∗

k

∂bi
− λi ∀i,

∂Lk

∂aij
=

∂x∗

k

∂aij
− λi∗n+j ∀i, j

∂Lk

∂λi
= −(bi − bi(α)) ∀i,

∂Lk

∂λi∗n+j
= −(aij − aij(α)) ∀i, j
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the Kuhn-Tucker conditions for a maximum (resp. minimum) are:

bi(α) ≤ bi ≤ bi(α) λi ≥ 0 (resp. ≤ 0)

(bi − bi(α))(
∂x∗

k

∂bi
− λi) = 0 (1)

∂x∗

k

∂bi
− λi ≤ 0 (resp. ≥ 0) (2)

λi(bi − bi(α)) = 0, ∀i = 1, 2, . . . , n (3)

aij(α) ≤ aij ≤ aij(α) λi∗n+j ≥ 0 (resp. ≤ 0)

(aij − aij(α))(
∂x∗

k

∂aij
− λi∗n+j) = 0 (4)

∂x∗

k

∂aij
− λi∗n+j ≤ 0 (resp. ≥ 0) (5)

λi∗n+j(aij − aij(α)) = 0, ∀i, j = 1, 2, . . . , n (6)

For a maximum (resp. minimum) the following cases can occur:

• Suppose that ∂xk

∂bi

> 0 (resp. < 0) then from (2) it follows that ∂xk

∂bi

≤
(resp. ≥)λi and thus λi 6= 0. Then from (3) one concludes that b∗i = bi(α).

• Suppose that ∂xk

∂bi

< 0 (resp. > 0) then, since λi ≥ (resp. ≤) 0 it

follows that ∂xk

∂bi

6= λi and thus from (1) one concludes that b∗i = bi(α).

• Suppose that ∂xk

∂bi

= 0 then the Kuhn-Tucker conditions are the following:

(bi − bi(α))λi = 0, λi ≥ 0, λi(bi − bi(α)) = 0

and thus the necessary conditions hold for all bi ∈ [bi(α), bi(α)].

The same cases, with analogous conclusions, occur for the coefficients aij .

4 Economic examples

(1) The market price of a good and the quantity produced are determined
by the equality between supply and demand. Demand is the amount of a
good that consumers are willing and able to buy at a given price. Supply is
the amount of a good producers are willing and able to sell at a given price.
Suppose that demand and supply are linear functions of the price:

{

qd = a ∗ p + b

qs = c ∗ p + d
,

where qs is the quantity supplied, that is required to be equal to qd, the
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quantity demanded, p is the price and a, b, c and d are coefficients to be
estimated. Suppose that we have only some imprecise data on the relation
between the quantity supplied and demanded at a given price, then we can
naturally describe the parameters by fuzzy numbers. Due to the equilibrium
conditions, the following fuzzy linear system should be solved:

{

x1 = a ∗ x2 + b

x1 = c ∗ x2 + d

This corresponds (see [Muzzioli and Reynaerts, 2004]) to find the vector
solution of the fuzzy system:

{

x1 − a ∗ x2 = b

x1 − c ∗ x2 = d

If one applies the nonlinear programming method, the following object func-
tions should be maximized (resp. minimized):

x1(a, b, c, d) =
bc − ad

c − a
x2(a, b, c, d) =

b − d

c − a

with constraints:

a ≤ a ≤ a(< 0) (0 <)b ≤ b ≤ b

(0 <)c ≤ c ≤ c d ≤ d ≤ d(< 0)

First of all we calculate the partial derivatives of the object functions:

∂x1

∂a
=

c(b − d)

(c − a)2
∂x1

∂b
=

c

(c − a)

∂x1

∂c
=

−a(b − d)

(c − a)2
∂x1

∂d
=

−a

(c − a)

∂x2

∂a
=

(b − d)

(c − a)2
∂x2

∂b
=

1

(c − a)

∂x2

∂c
=

−(b − d)

(c − a)2
∂x2

∂d
=

−1

(c − a)

Since ∂x1

∂a > 0 one obtains the maximum of x1 for amax = a and the minimum
for amin = a.
Since ∂x1

∂b > 0 one obtains the maximum of x1 for bmax = b and the minimum
for bmin = b.
Since ∂x1

∂c > 0 one obtains the maximum of x1 for cmax = c and the minimum
for cmin = c.
Since ∂x1

∂d > 0 one obtains the maximum of x1 for dmax = d and the minimum
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for dmin = d.
Since ∂x2

∂a > 0 one obtains the maximum of x1 for amax = a and the minimum
for amin = a.
Since ∂x2

∂b > 0 one obtains the maximum of x1 for bmax = b and the minimum
for bmin = b.
Since ∂x2

∂c < 0 one obtains the maximum of x1 for cmax = c and the minimum
for cmin = c.
Since ∂x2

∂d < 0 one obtains the maximum of x1 for dmax = d and the minimum

for dmin = d.
The solution to the system is:

([
bc − ad

c − a
,
bc − ad

c − a
], [

b − d

c − a
,
b − d

c − a
])

(2) The binary tree model of Cox et al. (1979) is used to price options and
other derivative securities. A European call option is a financial security that
provides its holder, in exchange for the payment of a premium, the right but
not the obligation to buy a certain underlying asset at a certain date in the
future for a specified price K. In the binary tree model of [Cox et al., 1979] the
following assumptions are made: (A1) the markets have no transaction costs,
no taxes, no restrictions on short sales, and assets are infinitely divisible; (A2)
the lifetime T of the option is divided into N time steps of length T/N ; (A3)
the market is complete; (A4) no arbitrage opportunities are allowed, which
implies for the risk-free interest factor, 1 + r, over one step of length T/N ,
that d < 1 + r < u, where u is the up and d the down factor. The European
call option price at time zero, has a well-known formula in this model,

EC(K, T ) =
1

(1 + r)N

N
∑

j=0

(

N

j

)

pj
upN−j

d

(

S(0)ujdN−j − K
)

+
,

where K is the exercise price, S(0) is the price of the underlying asset at time
the contract begins, pu and pd are the resp. up and down risk-neutral transi-
tion probabilities. Fundamental for the option valuation is the derivation of
the risk neutral probabilities, which are obtained from the following system:

{

pu + pd = 1

upu + dpd = 1 + r.
(7)

The solution is given by:

pu =
(1 + r) − d

u − d
pd =

u − (1 + r)

u − d
.

In order to estimate the up and down jump factors from market data, the
standard methodology (see Cox et al. (1979)) leads to set:

u = eσ
√

T/N , d = e−σ
√

T/N ,
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where σ is the volatility of the underlying asset.
If there is some uncertainty about the value of the volatility, then it is

also impossible to precisely estimate the up and down factors.
[Muzzioli and Reynaerts, 2004] suggest to model the up and down jump
factors by triangular fuzzy numbers.

A fuzzy version of the two equations of the system (7) should now be
introduced. This can be done (for each equation) in two different ways, since
for an arbitrary fuzzy number f there exists no fuzzy number g such that
f + g = 0 and for all non-crisp fuzzy numbers f + (−f) 6= 0:

pu + pd = (1, 1, 1)

pu = (1, 1, 1) − pd

respectively

upu + dpd = (1 + r, 1 + r, 1 + r)

upu = (1 + r, 1 + r, 1 + r) − dpd

where pu and pd are the fuzzy up and down probabilities and u and d are
triangular fuzzy numbers.

Therefore the linear system (7) can be rewritten in four different ways:

{

pu + pd = 1

upu + dpd = 1 + r,
(8)

{

pu = 1 − pd

upu + dpd = 1 + r,
(9)

{

pu = 1 − pd

dpd = (1 + r) − upu,
(10)

and
{

pu + pd = 1

dpd = (1 + r) − upu.
(11)

Different solutions to the same fuzzy linear system have been found in Muzzi-
oli and Torricelli (2001), and in [Reynaerts and Vanmaele, 2003], by solving
system (8) and system (9), respectively.

It is easy to see that the four systems have no classical solution, therefore
we investigate the vector solution.

If one applies this algorithm to the financial example, one should solve
the following systems:

{

pu + pd = 1

upu + dpd = 1 + r.
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{

pu + pd = 1

upu + dpd = 1 + r.
{

pu + pd = 1

upu + dpd = 1 + r.
{

pu + pd = 1

upu + dpd = 1 + r.

The solutions to those systems are resp.:
{

pu = (1+r)−d
u−d

pd = u−(1+r)
u−d .

{

pu = (1+r)−d
u−d

pd = u−(1+r)
u−d .







pu = (1+r)−d

u−d

pd = u−(1+r)

u−d
.

{

pu = (1+r)−d

u−d

pd = u−(1+r)

u−d
.

The final solution is obtained by taking the minimum and maximum for each
unknown:



























pu = min( (1+r)−d
u−d , (1+r)−d

u−d , (1+r)−d

u−d
, (1+r)−d

u−d
)

pu = max( (1+r)−d
u−d , (1+r)−d

u−d , (1+r)−d

u−d
, (1+r)−d

u−d
)

pd = min(u−(1+r)
u−d , u−(1+r)

u−d , u−(1+r)

u−d
, u−(1+r)

u−d

pd = max(u−(1+r)
u−d , u−(1+r)

u−d , u−(1+r)

u−d
, u−(1+r)

u−d
).

Therefore, the vector of fuzzy numbers:

(

[ (1+r)−d

u−d
, (1+r)−d

u−d ]

[u−(1+r)
u−d , u−(1+r)

u−d
]

)

,

is a solution to the system.
Note that the algorithm boils down to the following nonlinear program-

ming problems (for each α):

maxu,d (resp.minu,d)
1 + r − d

u − d
where (1 + r ≤)u ≤ u ≤ u

and d ≤ d ≤ d(≤ 1 + r)
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maxu,d(resp.minu,d)
u − (1 + r)

u − d
where (1 + r ≤)u ≤ u ≤ u

and d ≤ d ≤ d(≤ 1 + r)

Since ∂pu

∂u = d−(1+r)
(u−d)2 < 0 the maximum of pu is obtained for umax = u and

the minimum for umin = u.
Since ∂pu

∂d = (1+r)−u
(u−d)2 < 0 the maximum of pu is obtained for dmax = d and

the minimum for dmin = d.
Since ∂pd

∂u = (1+r)−d
(u−d)2 > 0 the maximum of pd is obtained for umax = u and

the minimum for umin = u.

Since ∂pd

∂d = u−(1+r)
(u−d)2 > 0 the maximum of pd is obtained for dmax = d and

the minimum for dmin = d

5 CONCLUSIONS

In this paper we have investigated the solution of a fuzzy linear system
of equations by resorting to a non-linear programming methodology.

We have applied the methodology proposed to two important economic
applications.
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