Classification of Domains with Boosted Blast

Cécile Capponi', Gwennaele Fichant?, Yves Quentin?, and Francois Denis!

L LIF - CNRS, Université de Provence, 39, avenue Joliot Curie
13453 Marseille Cedex 13, France
(e-mail: capponi@cmi.univ-mrs.fr, fdenis@cmi.univ-mrs.fr)
2 LMGM - IBCG - CNRS, Université Paul Sabatier, 118, route de Narbonne,
31062 Toulouse Cedex, France
(e-mail: fichant@bibcg.biotoul.fr, quentin@ibcg.biotoul.fr)

Abstract. This paper presents the first real experimentations of the boosting tech-
niques applied to BLAST for producing a model of functional domains whose amino-
acids primary sequences are not conserved during evolution. The BlastBoost al-
gorithm is depicted, and first results are analysed, showing the relevance of our
approach.

Keywords: Bioinformatics, Boosting, Sequence similarity, Functional domains.

1 Introduction

The function of a single protein is mainly carried out by a domain which
is a subsequence of amino-acids within the whole sequence of the protein.
During evolution, the sequence of such a domain can be significantly modi-
fied while the function is still conserved. One way of predicting the function
of a protein is to identify a known domain in the protein, despite sequence
modifications such as deletions or substitutions. Domains can be grouped
in functional families, themselves subdivided in subfamilies. Our work deals
with functional families whose domains are not well conserved during evolu-
tion, which means that, given the sequence of a protein, it is hard to predict
whether it carries the domain associated with the function. Formally, let F
be a functional family, let P = {p1,...,pn} a set of annotated proteins which
are known to belong or not to F', our problem is to decide whether any new
protein p belongs to F'. It is a supervised binary classification problem: how
to build a rule from the annotated proteins of P in order to determine the
class of new unannotated proteins.

In many cases, comparing a new sequence of protein p with some se-
quences of the family F' is enough for predicting whether p € F. Such a
similarity search may be achieved by using either an alignment program such
as BLAST [Altschul et al., 1997] or any model of the family’s sequences, for
example stochastic and probabilistic models such as Hidden Markov Models.
Unfortunately, none of these methods is satisfactory whenever the sequences
of the domains of the family are not conserved: the models are hard to build.
For example, Membrane Spanning Domains (MSD) play the role of a pore
through which a substrate goes in and/or out of the cell. The composition in

Boosting Blast 137

amino-acids of such a domain depends essentially on the nature of membrane
of the considered species, so their sequences are not conserved. As a conse-
quence, using usual alignment programs, or any current probabilistic model,
is not satisfactory for retrieving such a domain onto a protein.

One way for identifying such unconserved domains of a family F' on a new
protein p is to successively (1) specialize the family F' into several subfamilies,
(2) search significant similarities between p and each known protein of each
subfamily, and (3) check back the obtained predictions in order to remove
false positives. It is the IRIS strategy, as presented in [Quentin et al., 2002] for
retrieving proteins that carry a MSD domain. Despite good results, such a
strategy is tedious to set up for many reasons. Among others, the subdivision
of the whole family into many subfamilies is possible only when the considered
domain has been widely experimentally studied. Moreover, since it is still
hand-made, the subdivision may suffer from annotation mistakes.

Our proposal is to use a classification technique which avoids the subdi-
vision of the functional family: how to learn a rule for deciding whether a
given protein’s sequence contains a domain of a given functional family. Usual
techniques in supervised classification consist in computing at once one strong
classification rule, i.e. a rule that is both selective (few false positives) and
sensitive (few false negatives). Instead our proposal is to progressively learn
a sequence of weak rules: each weak rule is not efficient on the whole training
set albeit better than a random prediction. Each weak rule is learnt from an
example that was badly classified using the previous weak rules. A strong
rule is eventually computed by combining weak rules weighted by the confi-
dence we have on each. Such a technique is named boosting [Schapire, 1990]
[Freund, 1995]. Our proposal is to learn those classifiers using BLAST, which
is an algorithm to produce and evaluate local sequence alignments based on
a stochastic model.

2 Boosting blast

In the following of the paper, let X be the instance space and Y = {—1,+1}
be the label set. A learning algorithm takes as input a training set S =
{(z1,y1) - (®n,yn)} where z; € X and y; € Y. The learnt classifier is a
function H : X — Y that predicts the label of any example of X according
to a model computed from the training set S. The training error of H is
the error rate made on the training set, while the test error of H is an
approximation of the real error rate made by H on all the instances of X. The
IRIS strategy starts from observations which are positive examples described
by their sequence of amino-acids, and applies a combination of alignment
programs in order to tag any new protein. Our approach is to consider the
problem as a classification problem which must be solved by taking advantage
of the predictive power of local alignment programs.

138 Capponi et al.

Since boosting is a general method for improving the accuracy of any given
learning algorithm, we propose to use it in order to improve the significancy
of learning algorithms computed over local sequences alignments. We chose
to boost BLAST as it is the most popular tool for investigating sequence
alignments, and because it relies on a stochastic model.

2.1 Boosting: principles and algorithm

Boosting is a machine-learning method which is based on the observation
that finding many moderately inaccurate rules of thumb can be a lot easier
than finding a single, highly accurate prediction rule. Let M be an algorithm
or a method for finding the rules of thumb: let name it a “weak” or “base”
learning algorithm. The boosting approach calls M repeatedly, each time
feeding it with a different subset of S, more precisely a different distribution
over S. Each time M is called, it generates a new weak prediction rule;
after many rounds, the boosting algorithm combines these weak rules into a
single prediction rule that is proven to be much more accurate than any one
of the weak rules when enough data is available [Schapire, 1990]. On each
round, the distribution of S is updated in such a way that the weight on the
examples misclassified by the preceding weak rule is increased: this forces the
base learner M to focus its attention on the “hardest” examples. The final
combination of the weak rules is a simple weighted majority vote of their
predictions: the weight asssigned to a weak rule should actually account for
the confidence one can have on it.

We focus here on the AdaBoost algorithm (¢f. Algorithm 1 further on,
introduced by [Freund and Schapire, 1997]), which is of reference. A complete
and easy presentation of practical and theoretical results about boosting and
AdaBoost is available in [Schapire, 2002], especially results concerning error
bounds.

Algorithm 1 AdaBoost(T'), where T is the number of rounds (iterations)

Given: (z1,y1), ", (Zn,yn) where z; € X and y; € Y = {—1,+1}
Initialize D1 (i) < 1/n,Vi € 1..n (D is indexed by the indices of the examples)
forallt=1,---,7T do

Train base learner M using distribution Dy

Get the base classifier hy : X — {—1,+1}

Compute oz € R

Update:

Dy (i) exp(—auyihe(z:))

Zy
where Z; is a normalization factor chosen so that D;4+1 will be a distribution
of probabilities.

end for
Output the final classifier: H(x) = sign (Ethl athy (x))

Dt (i) —

Boosting Blast 139

Let us here comment the Algorithm 1 which considers the simplest case:
the range of each h; is binary. D is a distribution over the sample S which is
updated at each iteration ¢. Let ¢, = Prp,[hi(x;) # y;] be the training error
of the base classifier h;. The parameter a; should measure the importance
assigned to hy: it is usually related to €;. For binary base classifiers, we

€t

typically set ay = 1 1In (1*“) as suggested in [Schapire, 2002].

2.2 Aligning sequences with BLAST

For finding similarities between protein sequences, some algorithms compare,
in a pairwise fashion, a query sequence to all the sequences of a specified
database. Each comparison is given a score reflecting the degree of similarity
between the sequences. The similarity is measured and shown by aligning two
sequences, globally or locally. A global alignment is an optimal alignment
that includes all characters from each sequence, whereas a local alignment is
an optimal alignment that includes only the most similar local region(s) (e.g.
[Smith and Waterman, 1981]).

Among these algorithms, heuristic algorithms such as BLAST and FASTA
trade reduced accuracy for improved efficiency. BLAST [Altschul et al., 1990]
is actually a set of sequence comparison algorithms that are used to search
sequence databases for optimal local alignments to a query. BLAST improves
the overall speed of searches while retaining good sensitivity by breaking the
query and database sequences into fragments (words), and initially seeking
exact matches between fragments. The algorithm then tries to significantly
raise the length of each match: the obtained extended fragments are named
high-scoring segment pairs (HSPs). Hence, each pairwise sequence alignment
is first assigned a raw score S (which accounts for the score of its HSP). Then,
if the raw score is over a given threshold, a statistical score is computed in
such a way one can discriminate between real and artefactual matches: the
expected number of HSPs with score at least S is given by : £ = Kmn exp™*°
where K and A are parameters of the scoring system (gap costs and the matrix
of amino-acids substitutions), and m and n are the lengths of the sequences.
This score F, named the e-value of an alignment, is the expected number of
chance alignments with a score larger than (or equal to) S [Altschul et al.,
1997]. The smaller the e-value is, the most significant the alignment is.

Let A(z, D, 7) be a formatted result of the blastp program (program of
the BLAST software for aligning proteins sequences) with z as a query, and
D as the database: it is a set that contains all the proteins of D aligned with
x with an e-value less than 7.

2.3 Boosting Blast

Experimentations of the IRIS strategy show that some functional subfamilies
of MSD are more difficult than others to be delimited. Consequently, our

140 Capponi et al.

major intuition was that the boosting principle should help to slim over the
covering of the description space of the subfamilies, by focusing on the pro-
teins that are on the boundaries hence improving the whole covering of each
subfamily. Indeed, many false positives are produced by all the tested recog-
nition methods (HMM, profiles, etc.) while they could help to make more
accurate the model of the subfamilies We then supposed that the boosting
techniques would help to focus on proteins of the boundary of each subfamily.

The Algorithm 2 depicts the backbone of “boosting blast” for computing
a model of one type of functional domains. At each iteration of the boosting
algorithm, the obtained weak classifier h; is a decision tree, built from a
BLAST alignment of sequences whose query has been randomly selected in
the learning sample with respect to the distribution D;. In order to compute
a decision tree of deepness 1 (a stump), a BLAST program is launched with
query x; over the set of known protein’s sequences X, which leads to the set of
proteins aligned with z; under the given threshold 7 of e-value: A(z, X, 7).
The base classifier h; generated at iteration ¢ is then obvious: for any sequence
of protein z € X, if v € A(zy, X,7) (i.e. x is aligned with x;) then x is
tagged as x;, otherwise it is classifed like the majority (according to D;) of
the learning examples which are out of A(z¢, X, 7). With such a decision tree,
we can expect that the training error of each weak classifier is usually less
than 0.5 (which is a condition of the boosting technique). Indeed, the BLAST
model of alignments is usually very predictive locally, so a few errors should
be observed for examples aligned with x;; moreover, since the majority class
is chosen for classifying proteins that are not aligned with the x;, the training
error over them is less than 0.5. We expect that boosting would then extend
the local predictivity of BLAST to a global predictivity.

We actually set up many different kinds of weak classifiers. Two possible
variants among others are:

1. the deepness of the decision trees. The algorithm 2 considers trees with
only one test. The generalization to decision trees with d tests (a comb)
is straightforward: if the test j does not lead to a valuable alignment,
another example is selected from the same distribution D; from which a
new test j + 1 is achieved, and so on until d blastp have been launched
with d different queries of the sample. Such a generalization should raise
the number of examples covered by each weak classifier, hence hopefully
decrease the training error ;.

2. The class of the selected example. If considering all proteins of a species,
the ratio between positive and negative proteins is very low. As a con-
sequence, we chose only negative examples which are known to be close
to the positive examples. Then, since both classes may be randomly
selected, we authorize to allow different thresholds 7. and 7_ for the
e-value, whether the query is a positive or a negative example. An im-
portant variant is to only authorize the selection of positive examples: in

Boosting Blast 141

Algorithm 2 BlastBoost(7,T")

Given: (z1,y1), ", (Zn,yn) where z; € X and y; € Y = {—1,+1}
Initialize D1 (i) < 1/n
forallt=1,---,7T do

Select x;,+ according to the distribution D;

Compute A; = A(zs,t, X, 7) with blastp

Get ht : X — {—1,+1} such that Vz € X:

if x € Ay then hi(z) = iy else hy(x) = argmax; e 1 113 Z D.(5)
Ji=k,x; €A

Compute
. 1 1-— €t
€& = Z Dy (i) and oy = 3 In <€—)
=1k () k
Update:
. D (7) exp(—awyihe(x;
Droa() — DOl um(e)
t
end for

Output the final classifier:

H(x) = sign (Z athy (x))

such a way, the learning algorithm does not try to learn negative exam-
ples, instead it focuses on the boundaries of the family.

3 Experimentation

3.1 Protocols

The performance of the approach has been evaluated on a specific domain
found as a component of ABC transporters: the Membran Spanning Domain
(MSD). These domains have been chosen because they are poorly conserved
in sequence and their identification led to a large number of false positives in
previous analysis [Quentin et al., 2002]. We used five genomes to learn the
model, and five other genomes to test it. Genomes, both in the learning and
the test sets, were chosen according to the phylogeny. These sets are made
up of all the positive proteins (i.e. those proteins that carry a MSD domain),
and all the negative proteins that are close to the positive ones (i.e. they are
known to be aligned with one or more proteins of a MSD subfamily). Each
experiment has been launched 10 times with the same parametrization: the
reported results of one experiment are actually a mean of the results. These
first experiments helped us to investigate the role of parameters (d, 7, etc.).

142 Capponi et al.

Ideally, the BlastBoost algorithm should run each BLAST against the
whole set of known protein sequences. As it would be too long during both
the learning and the testing steps, we precomputed with BLASTP, and stored,
the alignement of each sequence of a species with each sequence of all the
species.

As far as we known, no other algorithm seeking similarities between pro-
teins have been integrated within a boosting algorithm. As a consequence,
we compare the results of BlastBoost with the IRIS strategy which previously
subdivided the MSD functional family into 18 subfamilies in order to be able
to annotate any new example with a low error test.

3.2 Results and discussion

The figure 1 presents the best results that we obtained by tuning up the
set of parameters and alternative algorithms presented section 2.3. The four
categories of test share the same d = 3; in all categories, positive and negative
examples were selected during the learning step.

training error test error
0,225 4 0,220 4
0,210 -|
0,200 0,200
0,175 0,190 1 _8/___—_,
\ 0,180
0,150 \\ 01704 D
0,125 4 0,160 -
\ 0,150 A
0,100 - 0,140 -
| D \ 0,130 -
0,075 . i 120 C
0,050 G w 0,110
0,100 -
0,025 4 A X 0,090 4
0,000) 0,080 T T T T T 1
100 200 300 400 500 600 700 100 200 300 400 500 600 700
iterations iterations
selectivity sensitivity
1,000 D 0,075 -
C /4
0,975 - 0,950 B
0,950 4 A 0,925 -
0,025 6,500
0,900 | D875
- 0,850
’ 0,825 fy_//—\
0,850 4 i
0825 g D
0800 g™ 0,750 1
0,775 4 0,725
0,750 T T T T T | 0,700 T T T T T 1
100 200 300 400 500 600 700 100 200 300 400 500 600 700
iterations iterations

Fig. 1. The number of iterations corresponds to the parameter 7" in the algorithms.
In tests of category A, 7 = 1072 and 7_ = 107'°. In tests of category B, 74 =
10719 and 7— = 1072, In tests of category C, 74 = 1072 and 7— = 1072, In tests
of category D, 74 = 107® and 7 = 1075,

Boosting Blast 143

The training (resp. testing) set contains 161 (resp. 172) positive proteins
and 73 (resp. 84) negative proteins. The selectivity of our method is almost
as good as this of the IrRIS method applied to MSD, while our sensitivity is
better (up to 0.999 with BlastBoost, and 0.946 with IRIS). Yet, their method
previously subdivides the functional families into 18 subfamilies, so their
learning and testing steps are independant from one subfamily to another,
therefore more accurate. As a consequence, the results of BlastBoost are
good: with comparable results, BlastBoost is efficient on the whole functional
family even if the proteins sequences are not conserved. When analyzing
the misclassified data, we noticed that the problematic subfamilies identified
by Iris (M7 and M9) were better characterized by BlastBoost, while one
subfamily has not been circled by BlastBoost whereas it was an “easy” family
for Tr1s (M12). This last point results from an under-representation of M12
members in the learning set (1 out of 161 proteins), leading to false negatives
during the tests. So, in order for our result to be statistically significant, we
still have to work out the samples so that each subfamily is represented.

We improved our results by increasing the number of genomes in both
samples: with eight in each, the test error is less than 0.1 in the categories
of test B and C while the selectivity gets perfect in these categories. The ac-
curate study of the produced weak classifiers shows that some sets of aligned
sequences have a poor significance in their globality, for example when pro-
teins are dimers. Thus, we think of defining and importing the significancy
of an alignment within the boosting model, in addition to the significancy
of pairwise alignments (e-value). The InfoBoost algorithm [Aslam, 2000]
should be a first step towards the integration of sequences alignements prop-
erties within a boosting algorithm, for it pays attention on the quantitative
and qualitative performance of each weak classifier, which in our case can be
measured from the properties of each sequences alignement.

4 Conclusion

We presented a new way for learning a model of unconserved functional fam-
ilies, without dividing them into subfamilies, which is based on amino-acids
sequences, by applying the boosting techniques to one performant alignment
program, BLAST. Our first results are good and promising. We think that
several improvments could be carried out, independently from the tuning of
the involved parameters. Among other, our first perspective is to integrate in
the boosting model, and especially in the rated confidence of weak classifiers,
some properties of alignment algorithms such as the density of an alignment,
which involves its covering rate of the database and the inner significancy of
the e-value’s distribution.

144 Capponi et al.

References

[Altschul et al., 1990]S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J.
Lipman. Basic local alignment search tool. Journal of Molecular Biology,
215:403-410, 1990.

[Altschul et al., 1997]S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang,
Z. Zhang, W. Miller, and D.J. Lipman. Gapped blast and psiblast: a new gen-
eration of protein database search programs. Nucleic Acid Research, 25:3389—
3402, 1997.

[Aslam, 2000]J. A. Aslam. Improving algorithms for boosting. In 18th Conference
On Learning Theory, COLT’2000, pages 200-207, Stanford, CA, USA, 2000.
Morgan Kaufmann.

[Freund and Schapire, 1997]Y. Freund and R.E. Schapire. A decision-theoretic gen-
eralization of on-line learning and an application to boosting. Journal of Com-
puter and System Sciences, 55(1):119-139, aug 1997.

[Freund, 1995]Y. Freund. Boosting a weak learning algorithm by majority. Infor-
mation and Computation, 121(2):256-285, 1995.

[Quentin et al., 2002]Y. Quentin, J. Chabalier, and G. Fichant. Strategies for the
identification, the assembly and the classification of integrated biological sys-
tems in completely sequenced genomes. Computers and Chemistry, 26:447-457,
2002.

[Schapire, 1990]R.E. Schapire. The strength of weak learnability. Machine Learning,
5(2):197-227, 1990.

[Schapire, 2002]R.E. Schapire. The boosting approach to machine learning: an
overview. In MSRI Workshop on Nonlinear Estimation and Classification,
2002.

[Smith and Waterman, 1981]T.F. Smith and M.S. Waterman. Identification of com-
mon molecular subsequences. Journal of Molecular Biology, 147:195-197, 1981.

