
Chaotic Aspects of a GRM1 Innovation

Diffusion Model

Christos H. Skiadas1, Giannis Rompogiannakis1, Apostolos Apostolou2,
and John Dimotikalis2

1 Technical University of Crete
Department of Production Engineering and Management,
Data Analysis and Forecasting Laboratory,
73100 Chania, Crete, Greece
(e-mail: skiadas@ermes.tuc.gr)

2 Technological Educational Institute of Crete
Heraclion, Crete, Greece

Abstract. Chaotic behavior of a generalized rational (GRM1) innovation diffusion
model is studied. The deterministic continuous version of this model was proposed,
analyzed and applied in earlier publications. Here, the chaotic behavior is expressed
through the discrete alternative of the continuous GRM1 model. The model shows
symmetric and non-symmetric behavior expressed by a parameter σ. In this ar-
ticle it is found that when the diffusion parameter b and the parameter σ verify
the relation b/σ ≥ 2 then the chaotic aspects of the model appear. A method is
proposed for fitting the model to the data. Time series data expressing the cumu-
lative percentage of steel produced by the oxygen process in various countries are
used. Characteristic graphs of the chaotic behavior are given and applications are
presented.
Keywords: Chaotic modeling, Diffusion modeling, Speed of diffusion, Innovation
diffusion, Non-linear models, Chaotic oscillations.

1 Introduction

It’s become a commonplace to call this the information age, but an even more
appropriate name might be the information age. In 1997, for example, the
U.S. Patent and Trademark Office received 237.000 patent applications, a
15% increase from the year before. Also in 1997, the agency granted 124.127
patents, a record number and an increase of 16% from the volume it recorded
at the beginning of the decade in 1991, a year that had also set a record for
patent activity. At individual companies, the pace of innovation is even
greater. In 1998, IBM Corp. received 2.657 patents for inventions, an in-
crease of 54% from the number it won in 1997, according to a preliminary
tally from the patent office. This was not a one-time surge, as IBM has been
the leading recipient of U.S. patents for six consecutive years. And IBM was
not alone in recording huge increases in U.S. patent activity last year: Sony
Corp.’s patent number rose 53%, Eastman Kodak Co.’s 41%, and Motorola
Inc.’s 33%, [Maguire and Hagen, 2001]. While not all patents translate into
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new products or new production methods, these figures clearly demonstrate
a tendency, and this explosion of innovation activity presents significant chal-
lenges. One of the special challenges firms face in this decade is the challenge
of designing, manufacturing, and distributing products in a global market-
place. If customers want new products, and they do, then companies have
no choice but to gear up their processes to provide innovative features and
the latest designs. This mean that companies must have a proper way to
describe the competitive dynamics in a market, [Modis, 1997] and to predict
how these new products or production methods will move in the market-
place. One of these methods is described in this paper. A model is proposed
and some empirical data are explored. In earlier publications several inno-
vation diffusion models where presented, analyzed and applied to real life
data [Bass, 1969], [Mahajan and Schoeman, 1977], [Sharif and Kabir, 1976],
[Skiadas, 1985], [Skiadas, 1986], [Skiadas, 1987], [Modis and Debecker, 1992].
A main direction of these applications was focused of the non-symmetric be-
havior of the models expressed by specific parameters. A relatively simple
but very flexible model was proposed in an earlier publication based on a
family of Generalized Rational Models, [Skiadas, 1985], [Skiadas, 1986], to
express asymmetry during the innovation diffusion process. This model is
expressed by the following differential equation:

ḟ = b
f(F − f)

F − (1 − σ)f
(1)

Where f is the number of adopters at time t, F is the total number of
potential adopters, b is the diffusion parameter, and σ is a dimensionless
parameter. This model has a point of infection varying from 0 to F when pa-
rameter σ decreases from ∞ to 0. Another interesting property of parameter
σ is that it gives a measure of the asymmetry of the model. Perfect symme-
try appear for σ = 1 when equation 1 reduces to equation 2 expressing the
popular logistic model:

ḟ = bf

(

1 −
f

F

)

(2)

For the last model it is easy to show that, by using the transformation:

ḟ =
df

dt
≈

∆f

∆t
=

ft+1 − ft

(t + 1) − t
= ft+1 − ft (3)

it is expressed by the following difference equation:

ft+1 = ft + bft

(

1 −
ft

F

)

(4)

Bifurcation and further chaotic behavior appear when 2 < b ≤ 3. Various
applications of the logistic model in several disciplines showed that parameter
b of the logistic model lies in very low limits lower that unity. Thus by
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using the logistic model it is not possible to express chaotic behavior in real
situations as the estimated values of parameter b fail to reach the limit at
which chaotic behavior appear. On the other hand provided data for various
cases show that oscillations and chaotic behavior appear quite frequently and
especially when the diffusion process is close to the upper limit F . Moreover
when the logistic model is applied in the form:

Xt+1 = bXt(1 − Xt) (5)

Where Xt = ft/F then, bifurcation and chaotic behavior appears when
3 < b ≤ 4.

Chaos appears for very high values of b, which are not reasonable for real
situations. Clearly the model form (4) is more correct as a discrete logistic
model expressing behavior similar to the continuous model resulting from
differential equation 2. This can be found in an older application done by
[Nash, 1976]. The aim of this paper is to show that the model (1) exhibits
chaotic behavior for values of parameter b that are quite low and are in
accordance to the values estimated in real situations. This is achieved by the
help of the flexible parameter σ, which gives a measure of the asymmetry of
the model. The chaotic behavior of the model is analyzed and illustrated by
using significant graphs. Finally, real life applications are presented.

2 The Generalized Rational Model

The model proposed is a discrete version of the continuous one expressed by
equation 1. By introducing the approximation of ḟ from equation 3 in the
differential equation 1 the following difference equation results:

ft+1 = ft + b
ft(F − ft)

F − (1 − σ)ft

(6)

Some interesting properties of this model are illustrated in Figures 1to 3.
In Figure 1a the proposed model shows the classical sigmoid form, whereas

in Figure 1b the bifurcation appear as a simple oscillation. In Figure 1c
a more complicated oscillation with four distinct oscillating levels appears,
whereas in Figure 1d - 1f a total chaotic form appears. In all cases presented
here the starting value is f0 = 1, the upper limit F = 100, b = 0.3 and σ
takes various values. The value selected for b is within the range 0.1 to 0.5,
which is valid in real situations. By varying the dimensionless parameter σ
several forms of the model appear.

A very important point is the estimation of the values of parameters b
and σ for which bifurcation appear. The presence of the first oscillations and
the onset to chaos, which follows, is a very important point when studying
innovation diffusion systems. According to the theory of chaotic models,
bifurcation for the model (6) starts when:
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Fig. 1. GRM1 model for a) b = 0.3 and σ = 2 and b) b = 0.3 and σ = 0.13
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Fig. 2. GRM1 model for a) b = 0.3 and σ = 0.12 and b) b = 0.3 and σ = 0.10
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Fig. 3. GRM1 model for a) b = 0.3 and σ = 0.09 and b) b = 0.3 and σ = 0.08
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f́ t+1 = −1, ft+1 = ft (7)

By applying equations 7 to equation 6 results the following relation for
parameters b and σ:

b

σ
= 2 (8)

When b/σ > 2 then oscillation and chaotic behavior appear by gradually
augmenting the fraction b/σ . When σ = 1 which is the case for the logistic
model bifurcation appear for values of b > 2.

It is also possible to obtain analytic form for the values of ft after the
first bifurcation point and before the second. To achieve this we consider
that ft+2 = ft . The exact formula is given by:

ft = F
(b + 2) ±

√

b(b+2)(b−2σ)
(b−2σ+2)

2(b + σ − 1)
(9)

For the logistic model σ = 1 and thus equation 9 reduces to:

ft = F
(b + 2) ±

√

(b + 2)(b − 2)

2b
(10)

When b > 2σ in equation 9 or b > 2 in equation 10 the system oscillates
at the values of ft given by the above formulas respectively. When b is higher
of the values expressing the second bifurcation point four distinct oscillating
levels appear and later eight and finally 2n points. For sufficient specifically
high values of b, n is very high and the system exhibits chaotic oscillations.

3 Parameters’ Estimation of GRM1 Model

The parameters of the discrete GRM1 model are estimated by an Iterative
non-linear regression analysis algorithm by minimizing the sum of squared
errors (S = SSE):

S =
∑

ε2t =

n
∑

t=1

(yt − ft)
2 (11)

where εt is the error term of the stochastic equation:

yt = ft +

n
∑

i=1

ϑft

ϑai

∆ai + εt (12)

yt denotes provided data and ft is calculated for every t from equation 6,
given a set of initial values of parameters ai. The estimation of parameters
is highly sensitive in the presence of oscillations and chaotic oscillations in
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the provided data. For a better fitting it was decided to use the non-linear
estimation method proposed by Nash for the discrete Logistic model for only
three parameters of the model and retaining the dimensionless parameter σ.
This parameter is gradualy changed as the iterative procedure proceeds until
the sum of squared errors is minimized. The starting values of the partial
derivatives need the estimation of the following forms given a set of initial
values for the parameters of the model:

ϑf1

ϑb
=

f0(F − f0)

F − (1 − σ)f0
(13)

ϑf1

ϑf0
= 1 + b

F 2 − 2Ff0 + (1 − σ)f2
0

(F − (1 − σ)f0)
2 (14)

ϑf1

ϑF
= bσ

(

f0

F

)2

(15)

After the above estimation of the initial values of the parial derivatives the
iterative procedure continues the estimation by using the following formulae:

ϑft+1

ϑb
=

ϑft

ϑb
(1 + bkt) +

ft(F − ft)

F − (1 − σ)ft

(16)

ϑft+1

ϑf0
=

ϑft

ϑf0
(1 + bkt) (17)

ϑft+1

ϑF
=

ϑft

ϑF
(1 + bkt) +

bσf2
t

(F − (1 − σ)ft)
2 (18)

where:

kt =

(

F 2
− 2Fft +

(1 − σ)ft

F − (1 − σ)ft

)2

(19)

4 Illustrations

Time series data expressing the cumulative percentage of steel produced by
the oxygen process in various countries are used from an earlier application,
[Poznanski, 1983]. Figure 4 illustrates the diffusion of Oxygen steel technol-
ogy in Spain from 1968 to 1980, for a number of 13 years. The actial data
include 18 years but, it is more appropriate to study the last part of the time
series data as this part shows the characteristic oscillations that are of special
interest in this study. The small cycles indicate the actual data, the dotted
line chracterizes the path of the logistic model and the simple line is for the
GRM1 model.

Parameter estimates and the sum of squared errors are summarized in
Table 1. The parameter b for the Logistic model is relatively high but is far
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Fig. 4. Spain, Oxygen Steel Process (1968-1980)

Model b l F σ(b/σ) SSE

Logistic 0.6309 24.373 51.474 - 72.838

GRM1 0.2331 25.779 51.736 0.084 (2.775) 41.748

Table 1. Parameter Estimates and Sum of Squared Errors (SSE) for Logistic and
GRM1 Models in Spain from 1968 to 1980

away from the value needed for the start of bifurcation (b = 2). The form of
the logistic path presented in the Figure 4 has a smouth form. The model
fail to express the oscillating behavior of the actual case studied. Instead the
GRM1 model shows a value for the parameter b lower to that of the Logistic
model but the extra parameter σ accounts for the presence of oscillating and
further of chaotic behavior as the fraction b/σ = 2.775 > 2. The estimated
values for the parameters l and F are very close for both models. The ability
of GRM1 model to follow the oscillating behavior of actual data is illustrated
in the above Figure and is also expressed by the strong improvement of the
Sum of Squared Errors (SSE).

Figure 5 illustrates the diffusion of oxygen steel technology in Italy from
1970 to 1980. The process ends in an oscillating form. The discrete Logistic
fails to express these oscillations whereas the discrete GRM1 shows a consid-
erable flexibility to approximate the real data. The sum of the squared errors
is very low in the case of GRM1 model compared to that of the Logistic as
is demonstrated in Table 2. The fraction b/σ = 3.5292 for the GRM1 model
accounts for the chaotic behavior.

The actual data for the diffusion of the oxygen steel process in Luxemburg
are of considerable interest as they cover the scale from 1.5 % during 1962 to
that of 100 % in 1980 (Figure 6). The GRM1 model showed a good flexibility
as it covers the fast growth process in the first stages of the diffusion process
followed by a sudden turn to the high platform of 100%. The small also
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Fig. 5. Italy Oxygen Steel Process (1970-1980)

Model b l F σ(b/σ) SSE

Logistic 0.5447 35.957 44.473 - 15.330

GRM1 0.08823 36.0402 44.4614 0.025 (3.5292) 7.431

Table 2. Parameter Estimates and Sum of Squared Errors (SSE) for Logistic and
GRM1 Models in Italy from 1970 to 1980

flictuations at the end of the process are also simulated quite well as the
fraction b/σ = 3.609 accounts for the chaotic region of the model. Figure 6
illustrates the case of Luxemburg for the following estimated values for the
parameters: b = 0.1931, l = 7.968, F = 99.669 and σ = 0.0535. The mean
squared error is MSE = 20.872.
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Fig. 6. Luxemburg Oxygen Steel Process (1962-1980)
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The flexibility and the ability of GRM1 model to simulate growth pro-
cesses that show at the end of the process oscillations and also chaotic oscil-
lations is demonstrated in the following case of the diffusion of oxygen steel
technology in Bulgaria from 1968 to 1978 (see Figure 7). The estimated pa-
rameters have values b = 0.04046, l = 49.2425, F = 58.412 and σ = 0.012.
The sum of squared errors is SSE = 21.431 and the fraction b/σ = 3.3718
indicates that the model behave in the chaotic region.

45

47

49

51

53

55

57

59

61

1 2 3 4 5 6 7 8 9 10 11

Fig. 7. Bulgaria Oxygen Steel Process (1968-1978)

5 Summary and Conclusions

A nonsymmetric innovation diffusion model is presented and analyzed regard-
ing the chaotic behavior. It is shown that this model exhibits bifurcation and
further chaotic behavior for some values of the fraction b/σ of the parameters
b and σ. Real time-series data are used and parameters are estimated by an
Iterative non-linear algorithm showed that in some cases the model performs
oscillations (the fraction b/σ has values higher than 2) whereas in other cases
the model showed the classical sigmoid form.
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