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Abstract. In this work, time series analysis and control charts are used to devise a
real-time monitoring strategy in a BTA deep-hole-drilling process. BTA deep-hole-
drilling is used to produce holes with high length to diameter ratio, good surface
finish and straightness. The process is subject to dynamic disturbances usually
classified as either chatter vibration or spiralling. In this work, we will focus on
chatter which is dominated by single frequencies. The results showed that the
proposed monitoring strategy can detect chatter and that some alarm signals are
related to changing physical conditions of the process.
Keywords: Drilling process, Time series, Control charts.

1 Introduction

Deep hole drilling methods are used for producing holes with a high length-
to-diameter ratio, good surface finish and straightness. For drilling holes
with a diameter of 20 mm and above, the BTA (Boring and Trepanning
Association) deep hole machining principle is usually employed. The
working principle is shown in Figure 1. The process is subject to dynamic
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Fig. 1. BTA deep hole drilling, working principle

disturbances usually classified as either chatter vibration or spiralling.
Chatter leads to excessive wear of the cutting edges of the tool and may
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also damage the boring walls. Spiralling damages the workpiece severely.
The defect of form and surface quality constitutes a significant impairment
of the workpiece. As the deep hole drilling process is often used during
the last production phases of expensive workpieces, process reliability is of
primary importance and hence disturbances should be avoided. Therefore, it
is necessary that a process monitoring system be devised to detect dynamic
disturbances.

In this work, we will focus on chatter which is dominated by single fre-
quencies, mostly related to the rotational eigenfrequencies of the boring bar.
Therefore, we propose to monitor the amplitude of the relevant frequencies
in order to detect chatter vibration as early as possible. Firstly, models that
describe the process are reviewed in section 2. In section 3, the proposed
monitoring strategy is discussed. Time series analysis is used in section 4 in
order to identify the transition to chatter and to check basic assumptions of
the application of control charts. Finally, the control charts are applied to
real data in section 5.

2 Process models

[Weinert et al., 2002] used the van der Pol equation to describe the transition
from stable operation to chatter in one frequency

d2M(t)

dt2
+ h(t)(b2

− M(t)2)
dM(t)

dt
+ w2M(t) = W (t), (1)

where t ∈ [0,∞), M(t) is the drilling torque, b ∈ R, the frequency w ∈

[200,2500], h(t) : R → R is an integrable function and W (t) is a white noise
process. [Theis, 2004] described the main features of the variation of the
amplitudes of the relevant frequencies, using a logistic function. He showed
that his approximation is directly connected to the proposed model. In fact,
he considered M(t) as a harmonic process

M(t) = R(t)cos(w + φ),

where φ is the corresponding phase. He showed that

2
dR(t)

dt
+ h(t)R(t)

(

b2
−

R(t)2

2

)

=
W (t)

w
. (2)

is the amplitude-equation for the differential equation in (1) if there is only
one frequency present in the process. From equation (2), the observed vari-
ation in amplitude of the relevant frequencies may be described by

Rt = (1 + at)Rt−1 − atbtR
3
t−1 + εt, (3)

where at and bt are time varying parameters and εt is normally distributed
with mean 0 and variance σ2

ε .
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3 Monitoring the residuals

For the monitoring procedure, the model given by equation (3) is approxi-
mated by its linear autoregressive part

Rt = (1 + at)Rt−1 + εt,

and this AR(1) model is used to calculate the residuals. In fact, it is known
that the nonlinear term −atbtR

3
t−1 becomes important when there is chatter.

The empirical evidence of this approximation is studied in section 4 using real
data. The idea behind residual control charts is if the AR(1) model fits the
data well, the residual will be approximately independent. Then, traditional
control charts designed to monitor independent data can be applied to the
residuals. Generally, residual control charts are designed for processes where
stationarity in the steady state is assumed, which means that a unique model
parameter for the whole process is used. For this reason a window of the T

recent observations is used to estimate parameters a, β and σε of the linear
regression model

Rt = β + (1 + a)Rt−1 + εt, (4)

where β is included because there is a general shift in the amplitudes after
depth 35 mm due to a change in the physical conditions of the process, see
section 4.2. The residuals are calculated using

et = Rt − (1 + ât−1)Rt−1 − β̂t−1, (5)

where ât−1 and β̂t−1 are estimates of the regression parameters a and β at
time t − 1. The choice of β̂t−1 and ât−1 is motivated by the fact that using
the estimated parameters at time t to calculate the residuals and to set the
control limits may rather serve to mask changes than to detect them, see
[Messaoud et al., 2004b]. In this work, two control charts are considered:
the residual Shewhart and a nonparametric EWMA based on standardized
sequential ranks.

3.1 The residual Shewhart

The residual Shewhart control chart operates by plotting residuals et given
by equation (5). It signals that the process is out of control at time t when
et is outside UCL and LCL, given by

LCL = −kσ̂ε,t−1 and UCL = kσ̂ε,t−1,

where σ̂ε,t−1 is the estimated standard deviation of the regression 4 at time
t − 1 and k is a constant. The choice of k is discussed later. Also, we used
σ̂ε,t−1 to avoid the masking problem.
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For the residual Shewhart charts, it is assumed that the residuals are
normally distributed. Thus, the statistical properties of these charts are
exact only if this assumption is satisfied. In practice, it is well known that
this assumption rarely holds. Therefore, a distribution-free control chart, the
EWMA based on sequential ranks, is used to monitor the process.

3.2 The EWMA chart based on sequential ranks

[Hackl and Ledolter, 1992] consider a nonparametric control chart procedure
for individual observations that use the “standardized rank” of the observa-
tions among the recent group of T observations. For this chart, the sequential
rank R∗

t is the rank of et among the most recent T (T > 1) observations et,
et−1, . . . , et−T+1. That is,

R∗

t = 1 +

t
∑

i=t−T+1

I(et > ei),

where I(.) is the indicator function. The standardized sequential rank R
(T )
t

is defined as

R
(T )
t =

2

T

(

R∗

t −
T + 1

2

)

.

The control statistic Qt is the exponentially weighted moving averages
(EWMA) of standardized ranks, computed as follow

Qt = (1 − λ)Qt−1 + λR
(T )
t ,

where Qt,1 is a starting value usually set equal to zero, and 0 < λ < 1 is a
smoothing parameter. The two sided EWMA chart signals that the process is
out-of-control when Qt is outside −h and h defined to be equal ±HσQ, where
σQ and H are the standard deviation of Qt and a constant, respectively. The
choice of h is discussed later. For more details about this chart, see [Hackl
and Ledolter, 1992] and [Messaoud et al., 2004b].

4 Time series analysis of the residuals

[Messaoud et al., 2004b] used the two control charts to monitor the variation
in amplitudes of frequency 703 Hz, which is among the eigenfrequencies of
the boring bar. The data, 1662 observations, are obtained in an experiment
with feed f = 0.185 mm, cutting speed vc = 90 m/min and amount of
oil V̇oil = 300L/min. For more details, see [Weinert et al., 2002]. In this
experiment chatter is dominated by the frequency 703 Hz. Figure (2) shows
the amplitude of frequency 703 Hz. The transition from stable operation to
chatter occurs before depth 300 mm. Indeed, by eye inspection, the effect
of chatter in this experiment is apparent on the bore hole wall after depth



Time series analysis, control charts: An industrial application 1333

0 100 200 300 400 500

0
50

10
0

15
0

20
0

25
0

0 − 500 Hole depth (mm)

A
m

pl
itu

de

Fig. 2. Amplitude of frequency 703 Hz

300 mm. Therefore, only the first 1000 observations (depth ≤ 300 mm) are
considered. Figure (3) shows the residuals calculated using equation (5).
Note that the first 100 residuals are calculated using

et = Rt − (1 + â100)Rt−1 − β̂100,

where â100 and β̂100 are estimates of the regression parameters a and β at
time 100.

4.1 Transition from stable state to chatter

In order to investigate the ability of the different control charts to detect
chatter, it is important to identify the transition from stable operation to
chatter. For this reason, [Messaoud et al., 2004b] studied the mean and
variance of frequency 703 Hz. Moreover, the authors applied the Teräsvirta-
Lin-Granger statistical test for nonlinear dependence in the residuals, see
[Teräsvirta et al., 1993]. As mentioned the nonlinear term −atbtR

3
t−1 of

model given by equation (3) becomes important when the process is unstable.
The nonlinearity test is used for residual nonlinear structure, after linear
structure has been removed by fitting the AR(1) model. The idea behind this
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Fig. 3. Plot of the residuals

test is by fitting the linear AR(1) model to the data, the inherent nonlinearity
structure has been swept into the residuals. The authors used different time
windows of length 100 observations to test for neglected nonlinearity for the
regression (3). The results confirms that the nonlinear term −atbtR

3
t−1 is

not important when the process is stable and showed that a change occurs
in the process at depth 252.91 mm. This change may indicate the presence
of chatter or that chatter will start in a few seconds.

4.2 Independence and normality assumptions of the residuals

[Messaoud et al., 2004b] used the Ljung-Box test in order to check the in-
dependence assumption of the residuals. In fact, if the AR (1) model fits
the data well, the residuals will be “approximately” independent. This is a
basic assumption for the application of the two control charts. In fact, it is
known that the performance of control charts is affected by the autocorrela-
tion in the observations. In our process, the presence of autocorrelation in
the residuals is destructive to the success of the proposed quality control pro-
cess. Furthermore, the authors checked the normality assumption using the
Shapiro-Wilks test. This assumption is very important only for the Shewhart
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chart, see section 3. The results shows that the residuals are independent.
However, the hypothesis of normality is rejected.

5 Choice of the control charts parameters and results

Knowing that the transition to chatter occurs at depth 252.91 mm, only the
first 900 observations (depth ≤ 270 mm) are considered for the application
of the different control charts. For the reference sample, usually sample of
100-200 observations is used in SPC applications. In this work, the T = 100
recent observations Rt−T+1, . . . , Rt are used to estimate the parameters of
the AR(1) model and to calculate the residuals. A larger sample cannot be
used because the monitoring procedures should start before depth 35 mm
(observation 120). In fact, chatter may be observed after that depth because
the guiding pads of the BTA tool leave the starting bush, which will be
discussed next.

5.1 Choice of the control charts parameters

Usually, the performance of control charts are evaluated by the average run
length (ARL). The run length is defined as the number of observations that
are needed to exceed the control limit for the first time. The ARL should be
large when the process is statistically in-control (in-control ARL) and small
when a shift has occurred (out-of-control ARL).

The parameters of the different control charts are selected so that all con-
trol charts have the same in-control ARL equal to 370. This choice should
avoid many false alarm signals because all control charts are applied to 900
observations. A value k = 2.95 is used for the residual Shewhart control
charts. For the EWMA chart, we used λ = 0.1, 0.3 and 0.5. The correspond-
ing values for h are respectively 0.349, 0.629 and 0.786.

5.2 Results

Table 1 shows the out of control signals for depth ≤ 270 mm . Table 1 shows
that all control charts (except the EWMA charts with λ=0.1 and 0.3) signal
at 32 ≤ depth ≤ 35 mm. As mentioned before the guiding pads leave the
starting bush approximately at depth 32 mm, which induce an increase in
the process mean and variance for the amplitude of the frequency 703 Hz.
This increase explains that all control charts have picked up these changes
very quickly. All control charts (except the EWMA charts with λ=0.1 and
0.3) signal at 110 ≤ depth ≤ 125 mm . It is known that depth 110 mm is
approximately the position where the tool enters the bore hole completely.
Theis (2004) noted that this might lead to changes in the dynamic process
because the boring bar is slightly thinner than the tool and therefore the
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pressures in the hole may change. The important out of control signals are
produced at 250 ≤ depth ≤ 255 mm. As discussed, it is showed that the
transition from stable operation to chatter have occurred at depth 252.91 mm.
Therefore, in this experiment chatter may be avoided if corrective actions are
taken after this signal.

Table 1. Out of control signals of the different control charts applied to the am-
plitude of frequency 703 Hz using window length T=100 (depth ≤270 mm)

Hole depth Observation Residual EWMA
(mm) number Shewhart

λ = 0.1 λ = 0.3 λ = 0.5

≤32 ≤107 0 0 0 0
32-35 108-117 2 0 0 1
35-45 118-150 7 14 4 2
45-70 151-249 1 0 1 1
70-110 250-366 1 0 0 0
110-125 370-416 1 0 0 1
125-200 417-665 4 8 3 2
200-250 666-832 5 1 0 0
250-255 833-849 2 1 3 2
255-260 850-865 0 0 0 0
260-270 866-898 1 0 0 0

Total 24 24 10 9

Note: The shaded lines refer to the the three physical conditions of the process
(i.e., guiding pads leave the starting bush, the tool is completely in the hole and
transition from stable operation to chatter)

In this experiment, the EWMA control chart with λ=0.5 is the best, and
should be chosen among the three EWMA charts considered in this work.
Indeed, only 9 out of control signals are produced and all changes of the
physical conditions of the process are detected. In practice, a procedure
to choose the smoothing parameter λ is required. As noted in section 5.3,
the Residual Shewhart control chart produces more signals than the EWMA
control chart with λ=0.5. This may be due to its sensitivity to the normality
assumption.

5.3 Multivariate monitoring

In this work, the results showed that chatter can be detected only by mon-
itoring the variation in amplitudes of frequency 703 Hz. This conclusion is
expected because this frequency is the relevant frequency in this experiment.
However, in practice there are more relevant frequencies and chatter may
be observed at the beginning of the drilling process immediately after the
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guiding pads have left the starting bush, with high and low frequencies, see
[Weinert et al., 2002]. Thus, an SPC procedure that monitors all the rele-
vant frequencies is necessary. [Messaoud et al., 2004a] used a multivariate
distribution-free EWMA control chart to monitor the drilling process. This
chart is based on sequential rank of data depth measures. The results showed
that it can detect chatter vibrations.

6 Conclusion

This work showed that using time series analysis and control charts, a reli-
able on-line monitoring system in the BTA process is proposed. The results
showed that the proposed monitoring strategy detect chatter and that some
out-of-control signals are related to physical conditions of the process (i. e.
guiding pads leave the starting bush, the tool is completely in the hole).
Therefore, real-time implementation of this monitoring strategy can be guar-
anteed.

Acknowledgements

This work has been supported by the Graduate School of Production Engi-
neering and Logistics at the University of Dortmund and the Collaborative
Research Centre “Reduction of Complexity in Multivariate Data Structures”
(SFB 475) of the German Research Foundation (DFG).

References

[Hackl and Ledolter, 1992]P. Hackl and J. Ledolter. A new nonparametric quality
control technique. Communications in Statistics-Simulation and Computation,
pages 423–443, 1992.

[Messaoud et al., 2004a]A. Messaoud, W. Theis, C. Weihs, and Hering. F. Applica-
tion and use of multivariate control charts in a bta deep hole drilling process.
to appear in the proceedings of the GFKL 2004, 2004.

[Messaoud et al., 2004b]A. Messaoud, W. Theis, C. Weihs, and Hering. F. Monitor-
ing the bta deep hole drilling process using residual control charts. Technical
Report 60/2004 of SFB 475, University of Dortmund, 2004.
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