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Abstract. We examine a discrimination rule for time series data generated by a
GARCH(1,1) process that classifies a sample into a group in terms of its uncondi-
tional variance. A simulation study indicates that our rule is more efficient than
a benchmark rule in all cases, except from a narrow range of alternatives lying on
the right side of the null.
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1 Introduction

In analyzing high frequency financial time series data, the common practice is
to examine the first differences of the logged observations, known as returns.
Contrary to the raw prices, returns are considered to be more amenable to
statistical manipulations. Under some fundamental economic hypotheses,
they form a sample of uncorrelated second order stationary series.

However, if we look at a typical returns plot of reasonable length, we
shall observe clusters of different variation, which, at a first sight, may cast
some doubt on the issue of the conventional equal variance perception. The
main characteristics of this idiosyncratic regular local heteroscedasticity are
captured by the widely used GARCH models introduced by [Bollerslev, 1986].
For a returns series, the variance is of practical interest, since it is widely
considered as a measure of the risk involved on investing on the particular
stock, [Tsay, 2002].

If we want to classify such a series in terms of its variance into one of two
groups, in principle we can treat it as an independent sample from identi-
cally distributed observations and apply the usual discriminant function, see
[Johnson and Wichern, 1992]. However, because of the presence of the local
heteroscedasticity, and the fact that independence and normality are chal-
lenged both on empirical and theoretical basis, we were motivated to seek
discrimination rules which take these facts into account.

In this paper we introduce a likelihood ratio type discrimination rule to
classify a GARCH(1,1) process into two categories. Since it is the uncondi-
tional long term variance which is mainly of interest, the test concentrates on
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this aspect. Methods and theory for discriminating processes on an overall
basis, mainly of the linear type, are reviewed by [Taniguchi and Kakizawa,
2000] and [Shumway and Stoffer, 2000].

In the sequel, in Section 2 we discuss the discrimination rule for an ap-
propriately parameterized GARCH(1,1) model. In Section 3 we present the
results of a simulation study comparing our approach against the benchmark
rule of independent and identically distributed, iid, observations. The final
section summarizes our conclusions and suggestions.

2 The GARCH(1,1) Discrimination Rule

Let Yt, t = 1, 2, ..., n, be a set of normally distributed iid observations. Sup-
pose one samples from either of two groups, G1 : N(0, σ2

1
) or G2 : N(0, σ2

2
).

The conventional likelihood ratio based rule, see [Johnson and Wichern,
1992], states that

classify the sample as belonging to G1 when lnL1

L2

≥ 0,

while
classify the sample as belonging to G2 when lnL1

L2

< 0, (1)

where Lj is the sample likelihood value, supposing it comes from Gj , j = 1, 2.
More precisely, the discriminant function is
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On the other hand, suppose our data are generated by a stationary
GARCH(1,1) process, [Bollerslev, 1986],

Yt = ut,

ut = εth
1/2

t , εt

iid
simN(0, 1),

ht = a0 + a1u
2

t−1
+ b1ht−1, (3)

εt independent of ht, and a0 > 0, a1, b1 ≥ 0, are constant parameters. It is
easy to see that the unconditional variance of Yt is

σ2 = E(Y 2

t ) =
a0

1 − a1 − b1

,

and that, although Yt are uncorrelated, they are not independent and nor-
mally distributed, see [Hamilton, 1994], amongst many others. Since σ2 is
the parameter of our prime interest, we reparameterize the model in terms
of σ2, writing

ht = σ2(1 − a1 − b1) + a1u
2

t−1
+ b1ht−1. (4)
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Group Gj , j = 1, 2, is described as the set of all possible GARCH(1,1) models
that have the same variance σ2

j , j = 1, 2. We are interested to allocate a
sample Yt, t = 1, 2, ..., T , to one of the G1 and G2 groups in terms only of its
variance σ2. The a1 and b1 parameters, parameterizing the dynamic behavior
of the conditional variance, are a sort of nuisance parameters.

The likelihood based rule will remain as in (1), but the likelihood ratio in
(2) is modified to take into account the special form of our heteroscedastic
data. Noting that the conditional distribution of Yt given ht is a normal
N(0, ht), the decomposition of the likelihood function of a time series process
yields the discriminant function
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3 Simulation Study

We carried out a simulation study to assess the GARCH discriminant func-
tion in (5) against (2), which we consider as a sort of benchmark rule. The
experimental data come from the GARCH(1,1) model in (3) with its con-
ditional variance reparameterized as in (4). Examining real daily or weekly
series of stock or exchange rate returns, we calculated their free variance to
be of the order of 5 · 10−5. We considered that as a typical variance value of
real life data, and in our experiments we set the variance of group G1 equal
to this value, that is σ2

1
= 5 · 10−5. The remaining parameters a1 and b1 take

a range of values within what is considered as typical in the relative litera-
ture. We mention that the condition for (3) to be stationary is a1 + b1 < 1.
Usually, in real series applications, the sum of a1 and b1 lies close to 1, and
a1 is always smaller than b1. When a1 + b1 = 1 the model is still stationary,
but with infinite variance and therefore makes no sense for our study.

Models 0 1 2 3 4 5

Parameters
a1 0.00 0.10 0.10 0.40 0.40 0.40
b1 0.00 0.50 0.80 0.50 0.55 0.58

Sum 0.00 0.60 0.90 0.90 0.95 0.98

Table 1. Models tested in the simulation

The criterion to assess our findings was the error rate P (2|1), that is the
probability to allocate a sample to G2 when it truly comes from G1. These
probabilities are reported in the corresponding tables and are calculated by
repeating the same experiment 300 times. Factors we felt that might be of
influence in the efficiency of the discrimination rules were the sample size
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T , the magnitude of the alternative variance in G2, and the combination
of the a1 and b1 values. The simulation study was designed to take into
consideration all these factors. In Table 1 we present only a few selected
combinations of a1 and b1 values from those examined, declared as models 0
to 5. Practically, Model 0 is an iid series.

σ
2

2 1 2 3 4 4.5 4.9 5.1 5.5 6 7 8 9

series length

GARCH rule
300 .000 .053 .313 .500 .550 .567 .417 .393 .350 .300 .277 .250

1000 .000 .007 .127 .400 .513 .560 .417 .383 .337 .280 .227 .193

benchmark rule
300 .000 .000 .003 .107 .317 .487 .420 .240 .107 .020 .003 .000

1000 .000 .053 .313 .013 .143 .460 .397 .160 .010 .000 .000 .000

Table 2. Error rates for Model 5. Alternative variance values should be multiplied
by 10−5. The true variance of the series is 5 · 10−5

Before presenting our results, we clarify the computational flow of our
procedure. Once we had in hand a series from G1, we maximized L1 with
respect to a1 and b1 considering σ2 known and equal to σ2

1
= 5 · 10−5. Next,

we maximized L2 for a1 and b1 setting now σ2 = σ2

2
, one of the alternatives. A

conjugate gradient routine was written to maximize the loglikelihoods, after
transforming a1 and b1 so that the restrictions, a1, b1 ≥ 0 and a1+b1 < 1 were
fulfilled. If maximization of both L1 and L2 was terminated successfully, then
(5) was calculated and the series was classified into G1 or G2 accordingly.

The most definite of our conclusions is that both rules perform better as
alternative variance σ2

2
takes values further away from σ2

1
. Also, the P (2/1)

error rate improves with the sample size, and this can be seen for the case
of Model 3 in Table 2. Since the general pattern of P (2/1) is the same for
either T = 300 or T = 1000, for reasons of space economy, we report more
detailed results in Table 3 only for T = 1000.

Concerning the effect of the sum α1 + β1, the error rate for both rules
increases as α1 + β1 approaches unity. For models with the same sum, the
rate is worse for larger α1, see for instance Model 2 versus Model 3 in Table 3.
This can be explained by the fact that larger α1 implies wider local variance
bursts.

Regarding the relative performance of the GARCH rule against the bench-
mark rule, which is of the main interest in our study, there is not a clear pat-
tern for the whole range of alternatives. The GARCH rule is always better
than the benchmark for σ2

2
smaller than the true σ2

1
= 5 · 10−5. For a range

of alternatives from 5.1 ·10−5 to approximately 10 ·10−5, the benchmark rule
outperforms the GARCH rule. This can be seen graphically in Fig.1 for the
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σ
2

2 : 1 2 3 4 4.5 4.9 5.1 5.5 6 7 8 9

GARCH rule
model 0 .000 .000 .003 .020 .133 .447 .413 .170 .133 .000 .000 .000
model 1 .000 .000 .000 .023 .190 .473 .410 .210 .070 .003 .000 .000
model 2 .010 .000 .000 .117 .316 .483 .447 .310 .197 .073 .027 .000
model 3 .000 .007 .127 .400 .513 .560 .417 .383 .337 .280 .227 .193
model 4 .000 .090 .363 .500 .570 .563 .420 .387 .350 .280 .260 .240
model 5 .090 .487 .663 .740 .783 .787 .193 .177 .167 .143 .110 .080

benchmark rule
model 0 .000 .000 .000 .013 .143 .460 .397 .160 .010 .000 .000 .000
model 1 .000 .000 .000 .030 .197 .480 .410 .207 .057 .003 .000 .000
model 2 .003 .000 .000 .137 .350 .500 .423 .297 .163 .037 .033 .000
model 3 .000 .033 .290 .051 .610 .677 .303 .257 .227 .197 .167 .133
model 4 .010 .307 .557 .710 .737 .747 .233 .213 .200 .180 .163 .133
model 5 .370 .690 .790 .827 .840 .853 .140 .133 .117 .103 .087 .083

Table 3. Error rates for models 0 to 5. Alternative variance values should be
multiplied by 10−5. The true variance of the series is 5 · 10−5.

case of Model 3. The superiority of the benchmark rule grows larger as the
sum α1 + β1 approaches unity.
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Fig. 1. Error rates for Model 3. Variances should be multiplied by 10−5.
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Fig. 2. Error rates for Model 5. Variances should be multiplied by 10−5.
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Fig. 3. Smoothed frequency curve from 2000 replications from the GARCH rule,
Model 5, σ

2

2 = 7 · 10−5.

Moving farther to the right of σ2

1
, the pattern is reversing. Fig.2 illustrates

the case for Model 5. Note that error rates in this interval are not reported
in Table 3. We can not explain this behavior. Finally, Fig.3 gives a smoothed
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plot of the distribution of (5) for Model 5 with σ2

2
= 7 · 10−5. The simulated

distribution was plotted from 2000 replications.

4 Conclusions

We conducted an empirical study classifying GARCH(1,1) time series data
on the basis of their unconditional variance. The procedure may prove useful
to classify financial returns data into different risk groups.

The GARCH rule is better than the benchmark rule, except from a small
range of alternatives starting from the null σ2

1
and going approximately up

to σ2

2
= 2σ2

1
. This is a point that deserves further investigation, and a proper

derivation of the distribution of (5) may shed some light.
Rule (5) generalizes easily for higher order GARCH models, although for

most applications a simple GARCH(1,1) suffices. Experience with real data
could allow us to cross examine rule (5) with other risk classifying criteria,
such as the β coefficient value provided by financial econometric theory.
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