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Abstract. In this paper, we study the nonparametric estimation of the regression
function for dependent data with measurement errors in responses and covariates.
The usual assumption in the errors-in-variables problem of indepedent errors can
be replaced by dependent errors when the data are time series. Both cases are
examined, and it is considered for first time the effect of measurement errors in
responses when we are estimating nonparametrically the regression function.
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1 Intoduction

Let {(Xi, Yi)}, i ≥ 1, be a strictly stationary process, where (Xi, Yi) takes
values in IRd × IR, d ≥ 1, and has probability density function (pdf) f(x, y).
Consider the deconvolution model

Zi = Yi + ηi, and Si = Xi + εi, (1)

where the noise processes {ηi}, and {εi}, i ≥ 1, are independent of the pro-
cesses {Yi} and {Xi}, i ≥ 1, respectively. In addition, we assume that the
marginal distributions of the noise processes {ηi} , i ≥ 1, and {εi} , i ≥ 1,
are known, and also the components εi1, ..., εid of the random vector εi are
indentically distributed according to a r.v. ε. Models of this type and the
deconvolution problems to which they lead arise in a variety of contexts in
economic statistics, biostatistics, and various other fields. For example, if
d = 1 in (1), Xi may represent the true income of a household at time i
measured with error εi, Yi its expenditures for some good which is subject to
the measurement error ηi, and Si, Zi its measured income and expenditures,
respectively. The interested reader may find additional applications of this
problem in [Carroll et al., 1995].

On the basis of the observations (Z1, S1), ..., (Zn, Sn), the problem is that
of providing nonparametric estimate of the kth conditional moment function
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m(k; x) = E(Y k/X = x), where Y and X are distributed as the r.v.’s Yi and
Xi, respectively. For the special case, k = 1, this problem was extensively
studied in the literature and also when the covariates Xi are measured with
some noise (i.e. ηi ≡ 0, εi 6= 0). See, for example, [Carroll et al., 1995], [Fan
and Masry, 1992] and [Ioannides and Alevizos, 1997].

Here, we investigate the more complicate deconvolution model defined as
in (1).

If we were using a Nadaraya-Watson type estimator, this problem could
not be solved since for k = 1 the noise could not be extracted from the re-
sponses. Instead to use a Nadaraya-Watson type estimator, we construct first
an estimator f̂n(y/x) for the conditional density of Y given X , fY/X(y/x), on
the basis of our osbervations (Z1, S1), ..., (Zn, Sn). Then one natural estima-

tor of m(k; x) is obtained if we integrating apropriate the quantity ykf̂n(y/x)
with respect to y. Because the type of this estimator was first introduced for
uncontaminated data by [Roussas, 1969], we call it Roussas’s estimator. In
order to construct an estimator for fY/X(y/x), the introduction of some nota-

tion and related concepts is necessary. Let Φ̃K1(t) and Φ̃K2(τ) be the Fourier

transforms of the univariate kernel density functions K̃1(x) and K̃2(y), and

let Φ̃ε(t) and Φ̃η(τ) be the characteristic functions of the noise variables ε
and η, respectively. Then, as in [Fan, 1991], we define the corresponding
deconvoluting kernel functions by the following relations,

W̃1n(u) =
1

2π

∫

IR

e−iut Φ̃K1(t)

Φ̃ε(
t

hn
)
dt, W̃2n(v) =

1

2π

∫

IR

e−ivτ Φ̃K2(τ)

Φ̃η( τ
hn

)
dτ, (2)

where 0 < hn ↓ 0. Thus the deconvoluting nonparametric estimator for the
conditional density function is given by:

f̂n(y/x) =
f̂2n(x, y)

f̂1n(x)
, (3)

where f̂1n(x) = 1
nhd

n

∑n
i=1 W1n(x−Si

hn
) and

f̂2n(x, y) = 1

nhd+1
n

∑n
i=1 W1n(x−Si

hn
)W̃2n(y−Zi

hn
) with W1n(x) =

∏d
j=1 W̃1n(xj).

Consequently the Roussas’s estimator for the kth conditional moment is
defined as follows:

mn(k; x) =

∫ Bn

−Bn

ykf̂n(y/x)dy

=
1

hn

n∑

i=1

W1n(x−Si

hn
)
∫ Bn

−Bn
ykW̃2n(y−Zi

hn
)dy

∑n
i=1 W1n(x−Si

hn
)

, (4)
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where Bn goes to infinity as n → ∞. We integrate the quantity ykW̃2n(y−Zi

hn
)

from −Bn to Bn, since this is not in general integrable. The proposed esti-
mator can be used in certain prediction problems.

[Ioannides, 1999] proved that the modal regression estimator can be
used for extracting the noises from both variables Y and X . [Hannan,
1963] and [Robinson, 1986] treating this problem in the case by which
m(1; x) = E(Y/X = x) is the simple linear regression model. This paper
attempts to study this problem in a more general setting using the Roussas’s
estimator (4).

In most publications on nonparametric deconvolution problems, a distinc-
tion is made between the case, where the noise characteristic functions Φ̃ε(t)

and Φ̃η(τ) decay for large |t| and |τ | either algebraically (ordinary smooth

case) or exponentially (supersmooth case).

In the case by which the noise variables follow an ordinary smooth
distribution, one of our main results is that the rates of the uni-
form strong convergence for the Roussas’s estimator in (4) is of order

max{( logn

nh
[(d+2β)+1+2β′]
n

)
1
2 , hn} with β and β′ positive numbers greater than 1

denoted the degree of smoothness of the noise variables ε and η, respectively.
See, also, Assumption (A5) in the Appendix. This rates is better than the rate

max{( logn

nh
2[(d+2β)+1+2β′]
n

)
1
4 , hn} found for the modal estimator in [Ioannides,

1999]. In the noiseless case our rate becomes of order max{( logn

nhd+1
n

)
1
2 , hn},

which is essentially the optimal rate of f̂2n(x, y) for estimating the pdf f(x, y),

and it is slight weaker than the optimal rate max{( logn
nhd

n
)

1
2 , hn}, obtained by

the Nadaraya-Watson estimator.

The case where the noise variable has a super smooth distribution can be
treated similarly, but the a.s. convergence rate is expected to be of logarith-
mic order.

Another interesting aspect of this paper is that we are not dealing only
with independent measurement errors, but in general we allow them to be
dependent. Usually in nonparametric deconvolution problems it is assumed
that the noise process cosists from i.i.d. r.v.’s, avoiding correlated noise as is
considered by [Hannan, 1963] and [Robinson, 1986]. Assuming that the joint
stochastic process {(Xi, εi, Yi, ηi)}, i ≥ 1, is a strong mixing process and the
noise process {(εi, ηi)}, i ≥ 1 either consists from i.i.d. r.v.’s or dependent
indentical r.v.’s we are proving the strong consistency of Roussas’s estimator
with the above rates under some mixing conditions which are weaker for the
i.i.d measurement errors case.

This paper is organized as follows. The main result, Theorem 3.1, is
given in Section 3, while some preparatory lemmas are given in Section 2.
All the asssumptions made in this paper are given at the end of the paper in
Appendix.
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2 Some preliminary results

Set

RBn
n (k; x) =

1

hd+1
n

n∑

i=1

W1n(
x − Si

hn
)

∫ Bn

−Bn

ykW̃2n(
y − Zi

hn
)dy, (5)

then the Roussas’s estimator mn(k; x) can be written as

mn(k; x) =
RB

n (k; x)

f̂n(x)
.

Now, for k > 0, denote by Ck the Cube in IRd which is the Cartesian product
of d copies of [−k, k]. Then working similar as in [Roussas, 1990], dividing
[−k, k] into bn subintervals each of length δn, and taking Jnl, l = 1, ..., N
the sets into which Ck is divided. Let xnl arbitrary points in Jnl. Pick
k sufficiently large, so that J ⊂ Ck, J compact subinterval of IRd. Then,
clearly,

|mn(k; x) − m(k; x)| ≤ |f̂−1
n |{|ERn(k; x) − ERBn

n (k; x)|

+ |RBn
n (k; x) − RBn

n (k; xnl)|

+ |ERBn
n (k; x) − ERBn

n (k; xnl)|

+ |ERBn
n (k; x) − R(k; x)| + |R(k; x)||f̂n(x) − f(x)|

+ |RBn
n (k; xnl) − ERBn

n (k; xnl)|}, (6)

with R(k; x) =
∫
IR

ykf(x, y)dy, and

Rn(k; x) = 1

hd+1
n

∑n
i=1 K1(

x−Xi

hn
)
∫
IR ykK̃2(

y−Yi

hn
)dy.

Lemma 2.1. Under Assumptions (A1)(ii)-(iv), and (A6)(ii),

one has

|ER̂n(k; x) − ER̂Bn
n | ≤ cBk−s

n ,

for all x in IRd, and s > k.

Lemma 2.2. Under Assumptions (A2), and (A5), it holds:

|RBn
n (k; x)−RBn

n (k; x′)| and |ER̂Bn
n (k; x)−ER̂Bn

n (k; x′)| are bounded by

c1B
k
nh

−(d(β+1)+β′+2)
n

∑d
i=1 |xi − x′

i|, for any x, x′ ∈ IRd, and c1 > 0.

Lemma 2.3. Under Assumptions (A1)(ii)-(iii), it holds

|ER̂n(k; x) − R(k; x)| ≤ c2hn,

for all x ∈ IRd, and some c2 > 0.
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Lemma 2.4. (i) Under Assumptions (A1)(i)-(iv), (A4), (A5), and if the
noise processes {εi} and {ηi}, {i ≥ 1}, consists from i.i.d. r.v.’s, then

lim
n→∞

sup
IRd

nhd(1+2β)+1+2β′

n V ar(RBn
n (k; x)) < c′,

for some c′ > 0.

(ii) Under the additional Assumption (A1)(v), one has

lim
n→∞

sup
IRd

nhd(1+2β)+1+2β′

n V ar(RBn
n (k; x)) < c′,

for some c′ > 0.

Lemma 2.5. Under Assumptions (A1), (A4), (A5) and (A6) one has

|RBn
n (xnl) − ERBn

n (xnl)| = O

[
(

logn

nh
d(1+2β)+1+2β′

n

)
1
2

]
, a.s.

Lemma 2.6. Under Assumptions (A1), (A4), (A5) and (A6) one has

|f̂n(xnl) − Ef̂n(xnl)| = O

[
(

logn

nh
d(1+2β)+1+2β′]
n

)
1
2

]
, a.s.

3 Main Result

The main result of this paper is the following theorem whose proof is a
consequence of the preliminary results established. More precisely, one has:

3.1 Theorem

Under Assumptions (A1)-(A6), then

supx∈J |mn(k; x) − m(k; x)| ≤ O(hn) + O

[
(

logn

nh
d(1+2β)+1+2β′

n

)
1
2

]
, a.s.

Proof: The proof follows from Lemmas 2.1-2.6, in conjunction with the
relation (6) using the same technique as in [Roussas, 1990] and [Ioannides,
1999].
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4 Appendix

The basic assumptions under which the a.s. uniform convergence of mn(k; x)
is established.

Assumption (A1)

(i) The process {(Xi, Yi, εi, ηi)}, i ≥ 1, is strictly stationary.
(ii) The processes {(Xi, Yi)}, i ≥ 1, and {(εi, ηi)}, i ≥ 1, are independent.
(iii) The processes {εi}, i ≥ 1, and {ηi}, i ≥ 1, are independent.
(iv) The process {(Xi, Yi, εi, ηi)}, i ≥ 1, is α−mixing with mixing coefficient

α(i) = O(i−k), k > 1 + 2
δ , δ > 0.

(v) The process {(Xi, Yi, εi, ηi)}, i ≥ 1, is α−mixing with mixing coeffi-

cient α(i) satisfying the requirement 1

h
(2dβ+2β′)
n

∑
∞

j=h−d−1
n

α(j)
2

2+δ < ∞,

for hn → 0, and cn → ∞, as n → ∞.

Assumption (A2)

(i) The probability density f(x) of X satisfies the Lipschitz condition of
order 1 on IRd.

(ii) inf
x∈J

|f(x)| > 0, where J is a compact subset of IRd.

(iii) The quantity R(k; x) satisfies the Lipschitz condition of order 1 on IRd.

Assumption (A3)

The kernel functions K̃i(.), i = 1, 2 are bounded probability density func-

tions on IR with
∫
IR |u|K̃1(u)du < ∞ and

∫
IR |v|K̃2(v)dv < ∞.

Assumption (A4)

(i) The characteristic functions Φ̃ε(t) and Φ̃η(τ) satisfy Φ̃ε(t) 6= 0, Φ̃η(τ) 6=
0 for all t and τ .

(ii) |t|β |Φ̃ε(t)| > d, d > 0, |t|β
′

|Φ̃η(τ)| > d′, d′ > 0, for large t and τ ,
and for some positive β , β′.

(iii) The joint characteristic function of ε1 and εj is ordinary smooth of order
2β.

(iv) The joint characteristic function of η1 and ηj is ordinary smooth of order
2β′.

Assumption (A5)

The characteristic functions Φ̃K1(t) and Φ̃K2(τ) satisfy the requirements:∫
|t|1+βΦ̃K1(t)dt < ∞,

∫
|τ |1+β′

Φ̃K2(τ)dτ < ∞.

Assumption (A6)

(i) E|Y |s ≤ ∞, for s > 1, and x ∈ E ⊂ IRd.
(ii) supx∈IRd [

∫
|y|sf(x, y)dy] < ∞, for some s > 1.
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