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1 Introduction

Lognormal random fields represent the technically more complex stage of
lognormal modelling. Problems as parameter estimation, lognormal simple
kriging, estimation based on lognormal maximum entropy, among others, are
generally undertaken by simply considering the lognormal random field as the
exponential transformation of a Gaussian random field, without reference to
any specific diffusion structure. This latter approach, however, constitutes
an important alternative in relation to modelling, parameter estimation and
inference, analysis of first passage through barriers, associated Îto equations
and derivation of discrete simulation schemes, etc.

Among the contribution to theoretical foundations for diffusion random
fields, see [Nualart, 1983]. In this context, [Gutiérrez et al., 2004] conside-
red lognormal random field models which are diffusions on each coordinate.
Involving exogenous factors affecting the drift term, the drift and diffusion
coefficients, which characterize a two-parameter lognormal diffusion under
certain conditions, were estimated by maximum likelihood. For data on a
regular grid, an alternative method was proposed to estimate the diffusion
coefficient.

In this work, the estimates of the drift and the diffusion coefficients given
in [Gutiérrez et al., 2004] are used for obtaining predictions and conditional
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simulations. The contents are organized as follows. First, the 2D lognormal
random field model is introduced. Second, estimation of the drift and diffu-
sion coefficients based on a discrete finite set of data is given. Finally, aspects
related to kriging and conditional simulation are addressed and illustrated.

2 Lognormal Diffusion Random Fields

Lognormal diffusion processes are commonly used in the analysis of economic
variables. When the parameter space is a subset of R2

+, [Nualart, 1983]
introduced a class of two-parameter random fields which are diffusions on
each coordinate and satisfy a particular Markov property related to partial
ordering in R2

+. Using this theory, we can introduce a 2D lognormal diffusion
random field as follows.

Let
{
X (z) : z = (s, t) ∈ I = [0, S]× [0, T ] ⊂ R2

+

}
be a positive-valued

Markov random field, defined on a probability space (Ω,A, P ), where
X (0, 0) is assumed to be constant or a lognormal random variable with
E [lnX (0, 0)] = φ0 and var (lnX (0, 0)) = σ2

0 . The distribution of the ran-
dom field is determined by the following transition probabilities:

P (B, (s + h, t + k) | (x1, x, x2) , z) =

P [X (s + h, t + k) ∈ B | X (s, t + k) = x1, X (z) = x, X (s + h, k) = x2] ,

where z = (s, t) ∈ I, h, k > 0, (x1, x, x2) ∈ R3
+ and B is a Borel subset. We

suppose that the transition densities exist and are given by

g(y, (s + h, t + k) | (x1, x, x2) , z)

=
1

y
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2πσ2
z;h,k
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,

for y ∈ R+, with

mz;h,k =

∫ s+h

s

∫ t+k

t

ã (σ, τ) dσdτ, σ2
z;h,k =

∫ s+h

s

∫ t+k

t

B̃ (σ, τ) dσdτ,

and ã, B̃ being continuous functions on I. Under these conditions we can
assert that {X (z) : z ∈ I} is a lognormal diffusion random field. The one-
parameter drift and diffusion coefficients associated are given by

a1 (z) x :=

(
ã1 (z) +

1

2
B̃1 (z)

)
x, B1 (z)x2 := B̃1 (z) x2,

a2 (z) x :=

(
ã2 (z) +

1

2
B̃2 (z)

)
x, B2 (z)x2 := B̃2 (z) x2,

where
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ã1(s, t) =

∫ t

0

ã (s, τ) dτ, B̃1(s, t) =

∫ t

0

B̃ (s, τ) dτ,

ã2(s, t) =

∫ s

0

ã (σ, t) dσ, B̃2(s, t) =

∫ s

0

B̃ (σ, t) dσ,

for all z = (s, t) ∈ I, x ∈ R+.
The random field {Y (z) : z ∈ I} defined as Y (z) = lnX (z) is then a

Gaussian diffusion random field, with ã and B̃ being, respectively, the drift
and diffusion coefficients, and ã1, ã2, B̃1 and B̃2 being the corresponding one-
parameter drift and diffusion coefficients. Furthermore, if z, z′ ∈ I, z = (s, t),
z′ = (s′, t′) , then

mY (z) := E [Y (z)] = φ0 +

∫ s

0

∫ t

0

ã (σ, τ) dσdτ,

σ2
Y (z) := var (Y (z)) = σ2

0 +

∫ s

0

∫ t

0

B̃ (σ, τ) dσdτ,

cY (z, z′) := cov (Y (z) , Y (z′)) = σ2
Y (z ∧ z′) ,

where we write z ∧ z′ for (s ∧ s′, t ∧ t′), with ‘∧’ denoting the minimum.
Under suitable regularity conditions, it is possible to obtain a SPDE for-

mulation for a two-parameter diffusion RF. In fact, we need hypotheses I-V

to be satisfied, in order to apply Theorem 2.8 of [Nualart, 1983]. These hy-
potheses and the uniqueness of solution have been proved by the authors to
hold for the lognormal diffusion RF considered. Thus, there exists a two-
parameter Wiener RF {W (z) : z ∈ I} (adjoining, if it is necessary, a new
probability space) such that {X (z) : z ∈ I} is the only diffusion RF satisfy-
ing the following partial SPDE:

∂2X(s, t)

∂s∂t
− X−1 (s, t)

∂X(s, t)

∂s

∂X(s, t)

∂t
−

∂a2 (s, t)

∂s
X(s, t) =

(
∂B2 (s, t)

∂s
+ B1 (s, t)B2 (s, t)

)1/2

X(s, t)
∂2W (s, t)

∂s∂t
.

This aspect is not essential for the approach considered in this work, although
it provided an alternative interesting interpretation of the RF formulation
considered.

Henceforth we will assume that the conditions usually considered for esti-
mation of the drift and diffusion coefficients in the one-parameter case hold;
that is, P [lnX (0, 0) = φ0] = 1 (i.e. σ2

0 = 0) and σ2
Y (z) = B̃st, z = (s, t) ∈ I.

3 Estimation of the Drift and Diffusion Coefficients

Let {X (z) : z ∈ I} be a lognormal diffusion random field. Data X =(X (z1),
..., X (zn))t are assumed to be observed at known spatial locations z1 =
(s1, t1), z2 = (s2, t2) , ..., zn = (sn, tn) ∈ I. Let x = (x1, x2, ..., xn)

t
be
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a sample. Let us consider the log-transformed n−dimensional random vec-
tor, Y = (Y (z1) , Y (z2) , ..., Y (zn))

t
= (lnX (z1) , lnX (z2) , ..., lnX (zn))t =

lnX, and the log-transformed sample, y = (y1, y2, ..., yn)
t
= lnx. We denote

mY = (mY (z1) , ..., mY (zn))
t
, ΣY =

(
σ2

Y (zi ∧ zj)
)
i,j=1,...,n

.

3.1 MLE for the Drift and Diffusion Coefficients Using

Exogenous Factors

Suppose that the drift coefficient ã of Y is a linear combination of se-
veral known functions, set {h1 (z) , ..., hp (z) : z ∈ I}, with real coefficients
φ1,..., φp :

ã (z) =

p∑

α=1

φαhα (z) , z ∈ I.

Defining, for z = (s, t) ∈ I,

f0 (z) = 1, fα (z) =

∫ s

0

∫ t

0

hα (σ, τ) dσdτ, α = 1, ..., p,

the mean of Y is given by

mY (s, t) = φ0 +

p∑

α=1

φα

∫ s

0

∫ t

0

hα (σ, τ) dσdτ =

p∑

α=0

φαfα (z) .

Thus, denoting F = (f0, f1, ..., fp), with fα = (fα (z1) , fα (z2) , ...., fα (zn))
t
,

for α = 0, 1, ..., p, and φ = (φ0, φ1, ..., φp)
t, we have

mY = (φ0f0 + φ1f1 + ... + φpfp) = Fφ.

Let us write

ΣY = B̃M :=B̃




s1t1 (s1 ∧ s2) (t1 ∧ t2) · · · (s1 ∧ sn) (t1 ∧ tn)
(s1 ∧ s2) (t1 ∧ t2) s2t2 · · · (s2 ∧ sn) (t2 ∧ tn)

...
...

. . .
...

(s1 ∧ sn) (t1 ∧ tn) (s2 ∧ sn) (t2 ∧ tn) · · · sntn


 .

With this notation, the MLE for the drift and diffusion coefficients are,
respectively,

φ∗ =
(
φ∗

0, φ
∗

1, ..., φ
∗

p

)t
=

(
FtM−1F

)−1
FtM−1 lnx (1)

and

B̃∗ =
1

n
(lnx − m∗

Y )t
M−1 (lnx − m∗

Y ) , (2)

where m∗

Y = Fφ∗.
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3.2 Estimation of the Drift and Diffusion Coefficients from Data

on a Regular Grid

Suppose now that the data are obtained on a regular grid in R2
+. Let z = (s, t)

be a point in a set S of locations included in the regular grid and let us denote
the 2D four-point increment of Y by

Y (∆hk (z)) = Y (s + h, t + k) − Y (s, t + k) − Y (s + h, t) + Y (s, t) ,

for h, k > 0. Taking into account that the variance of this increment,

var (Y (∆hk (z))) = σ2
z;h,k =

∫ s+h

s

∫ t+k

t

B̃ (σ, τ) dσdτ = B̃hk,

does not depend on the location z, but only on the area hk, the diffusion
coefficient B̃ can be estimated using a similar approach to Matheron’s esti-
mator for the variogram (see, for example, [Cressie, 1993]), considering here
2D four-point increments, as follows.

Under the implicit condition that zi = (si, ti) < zj = (sj , tj), we denote

[zi, zj ] = {(si, ti) , (si, tj) , (sj , si) , (sj, tj)} .

The estimator, for z = (s, t), is

v̂ar (Y (∆hk (z)))

=
1

|N (hk)|

∑

N(hk)

(Y (s + h, t + k) − Y (s, t + k) − Y (s + h, t) + Y (s, t)

−mY (s + h, t + k) + mY (s, t + k) + mY (s + h, t) − mY (s, t))
2
,

where

N (hk) ≡ {(zi,zj) : [zi, zj ] ∈ S, (sj − si) (tj − ti) = hk, i, j = 1, ..., n}

and |N (hk)| is the number of different elements of N (hk). If the mean is
unknown, it can be estimated using (1) by m∗

Y (z) =
∑p

α=0 φ∗

αfα (z).

4 Numerical Examples

In this section we describe some numerical examples illustrating estimation
for a lognormal diffusion random field under the approaches considered and
an example of prediction and conditional simulation. First, using simulated
data on a regular grid, the two estimation methods for the diffusion coefficient
respectively described in Sections 3.1 and 3.2 are compared, considering the
case of known non constant mean (for the associated Gaussian random field).
Second, we obtain a conditional simulation for a lognormal diffusion random
field.
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The parameter space considered is I = [0, 1.65] × [0, 1.05]. Realizations
are generated on a regular 19×19 grid, S, with SW corner at the origin (0, 0)
and NE corner at point (1.65,1.05). Parameter estimates, kriging predictions
and simulations are obtained on this grid based on the data X, consisting of
the values corresponding to the 7 × 7 regular grid, subset determined by the
same corner points. We will obtain unconditionally simulated realizations by
the method of unconstrained simulation described in [Christakos, 1992].
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Fig. 1. Contour-level plot of 49 values generated (simulation 1) for the lognormal
diffusion random field (known non constant mean case)

Sim. no. B̃
∗

B̃
∗∗ Sim. no. B̃

∗

B̃
∗∗

1 1.1115 0.8199 9 0.9911 0.8236

2 1.0605 0.5584 10 0.9909 0.4597

3 1.2060 1.0004 11 1.0107 0.4792

4 1.2153 0.5457 12 0.9016 0.3990

5 1.1324 0.8595 13 0.8914 1.5703

6 0.8309 0.6103 14 1.1850 0.9163

7 0.6138 0.3944 15 0.9870 1.2419

8 1.3243 0.4456 16 1.0684 1.1750

Table 1. Estimates of B̃ by the two methods considered, for 16 simulations of the
lognormal diffusion random field (known non constant mean case)

We consider a lognormal diffusion random field with non constant mean,
with φ0 = 0.25, ã (z) = −2, for all z ∈ I, and B̃ = 1. Table 1 gives the esti-
mates of B̃∗ and B̃∗∗ obtained for 16 independent unconstrained simulations
for this random field, assuming that the mean of the associated Gaussian
random field is known.
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From the results obtained in both cases studied, we can observe that the
maximum likelihood estimation method overall provides more accurate es-
timates for the diffusion coefficient than the alternative method based on
evaluation of 2D four-point increments. A similar behavior has been ob-
served in several other cases studied by the authors. Lack of stability in the
estimate B̃∗ can be possibly overcome by robust estimation of the slope of
v̂ar (Y (∆hk (z))) vs. hk instead of using the least-squares approach.
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Fig. 2. Contour-level plot of the 361 predictions obtained by simple lognormal
kriging using the 49 values plotted in Figure 1

As for simulation, we have considered a practical method for generating
conditional simulations that combines unconditional simulation and kriging,
described in [Yuh-Ming and Hugh Ellis, 1997]. This technique yields an
unbiased conditional simulation (with respect to sample data) and reproduces
conditional variances. We can summarize the procedure as follows:

Step 1 Predict {ŷ (zi) : zi ∈ S} based on the data Y and on the predictor
of simple lognormal kriging.

Step 2 Calculate unconditionally simulated realizations {yu (zi) : zi ∈ S}
based on the method of unconstrained simulation and using the estimates
given in (1) and (2).

Step 3 Calculate the set of predictions
{
ŷu (zi) : zi ∈ S

}
based on the data

{yu (zi) : zi ∈ G} and on the predictor of simple lognormal kriging.
Step 4 Calculate conditional simulation realizations of Y by

yc (zi) = yu (zi) +
[
ŷ (zi) − ŷu (zi)

]
, ∀zi ∈ S.

Step 5 Calculate conditional simulation realizations of X by

xc (zi) =
exp {yu (zi)} exp {ŷ (zi)}

exp
{
ŷu (zi)

} ≡
xu (zi) x̂ (zi)

x̂u (zi)
, ∀zi ∈ S.

For the example of prediction and conditional simulation we consider the
previous diffusion. That is, a lognormal diffusion random field with non
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constant mean, φ0 = 0.25, ã (z) = −2, for all z ∈ I, and B̃ = 1. Using
the 49 values obtained from simulation 1 (see Figure 1) we have obtained
B̃∗ = 1.1115 and using this estimate we have calculated 19 × 19 predictions
by simple lognormal kriging. The results are plotted in Figure 2.
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Fig. 3. Contour-level plot of the 361 simulations obtained by conditional simulation
using the 49 values plotted in Figure 1

Figure 3 displays a contour-level plot for the 19×19 conditional simulation
realization based on the data of simulation 1, and Figure 4 displays the
original contour-level plot.
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Fig. 4. Contour-level plot of the 361 values (including the 49 values used for esti-
mating B̃) generated (simulation 1) for the 2D lognormal diffusion considered
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5 Conclusions

In this paper we study prediction and conditional simulation for a 2D log-
normal diffusion random field, including exogenous factors in its formulation.
This is an important case of random fields which are not intrinsically station-
ary, then well-known related techniques cannot be applied. Such models are
useful to represent diffusion-type positive valued characteristics, like pollu-
tant indicators in environmental studies. The approach considered allows us
to use well-known techniques for estimation and prediction, such as simple
kriging, and for conditional simulation.

Possible extensions under investigation by the authors include conside-
ration of non-constant diffusion-type values at the boundary axes as well as
higher-dimension spatial and spatio-temporal formulations. Also, develop-
ment of validation techniques in this context would be most important for
real applications.

References

[Christakos, 1992]G. Christakos. Random Field Models in Earth Sciences. Aca-
demic Press, San Diego, 1992.

[Cressie, 1993]N. Cressie. Statistics for Spatial Data. Wiley & Sons, New York,
1993.

[Gutiérrez et al., 2004]R. Gutiérrez, C. Roldán, R. Gutiérrez-Sánchez, and J.M.
Angulo. Estimation and prediction of a 2D lognormal diffusion random field.
Stochastic Environmental Research and Risk Assessment, in press, 2004.

[Nualart, 1983]D. Nualart. Two-parameter diffusion processes and martingales.
Stochastic Processes and their Applications, 15:31–57, 1983.

[Yuh-Ming and Hugh Ellis, 1997]L. Yuh-Ming and J. Hugh Ellis. Estimation and
simulation of lognormal random fields. Computers and Geosciences, 23(1):19–
31, 1997.


