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BP 70 Plouzané 29820 France
(e-mail: lurton@ifremer.fr)

Abstract. The aim of this paper is a complete statistical analysis of the two di-
mensional discrete wavelet transform, 2D DWT. This analysis represents a gener-
alization of the statistical analysis of the 1D DWT, already reported in literature.
The probability density function, the correlation and the first two moments of the
coefficients of the 2D-DWT are computed. The asymptotic behaviour of this trans-
form is also studied. The results obtained were used to design a new denoising
system dedicated to the processing of SONAR images.
Keywords: Discrete Wavelet Transform, Asymptotic analysis, convergence speed.

1 Introduction

The 2D DWT is a very modern mathematical tool. It is used in compression
(JPEG 2000), denoising and watermarking applications. To exploit all its
advantages, it must be carefully analyzed. The aim of this paper is the study
of this transform from the statistical point of view. Such a complete study
was not already reported.

2 The 2D DWT

In this paper the most commonly used 2D DWT is considered. It is built
with separable orthogonal mother wavelets, having a given regularity. At
every iteration of the DWT, the lines of the input image (obtained at the
end of the previous iteration) are low-pass filtered with a filter having the
impulse response m0 and high-pass filtered with the filter m1. Then the lines
of the two images obtained at the output of the two filters are decimated
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with a factor of 2. Next, the columns of the two images obtained are low-
pass filtered with m0 and high-pass filtered with m1. The columns of those
four images are also decimated with a factor of 2. Four new sub-images
(representing the result of the current iteration) are generated. The first one,
obtained after two low-pass filterings, is named approximation sub-image (or
LL image). The others three are named detail sub-images: LH, HL and HH.
The LL image represents the input for the next iteration. In the following,
the coefficients of the DWT will be noted with xD

k
m, where x represents

the image who’s DWT is computed, m represents the iteration index (the
resolution level) and k = 1, for the HH image, k = 2, for the HL image,
k = 3, for the LH image and k = 4, for the LL image. These coefficients are
computed using the following relation:

xD
k
m [n, p] =

〈

x (τ1, τ2) , ψ
k
m,n,p (τ1, τ2)

〉

(1)

where the wavelets can be factorized:

ψk
m,n,p (τ1, τ2) = αk

m,n,p (τ1) · β
k
m,n,p (τ2) (2)

and the two factors can be computed using the scale function ϕ (τ) and the
mother wavelets ψ (τ) with the aid of the following relations:

αk
m,n,p (τ) =

{

ϕm,n (τ) , k = 1, 4
ψm,n (τ) , k = 2, 3

(3)

βk
m,n,p (τ) =

{

ϕm,n (τ) , k = 2, 4
ψm,n (τ) , k = 1, 3

(4)

where:

ϕm,n (τ) = 2−
m

2 ϕ(2−mτ − n) (5)

ψm,n (τ) = 2−
m

2 ψ
(

2−mτ − n
)

(6)

3 The pdfs of the wavelet coefficients

These pdfs can be computed following the description of the 2D DWT given
in the previous paragraph. In fact each sub-image has its own pdf. The
pdfs computation is based on the relation between the pdfs of the random
variables from the input and the output of a digital filter. This is a sequence of
convolutions which number is equal with the number of the filter coefficients.
The pdfs of the wavelet coefficients, xD

k
m, can be expressed with the aid of

the pdf of the input image, x, using the relation, [1]:

f
xDk

m

(a) = ?
M(k)
q1=1 ...?

M0

rm=1fd(k, q1, r1, ..., qm, rm, a) (7)
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where:

fd (k, q1, ..., rm, a) = G (k, q1, ..., rm) fx (G (k, q1, ..., rm) a) (8)

and:

G (k, q1, ..., rm) =
1

F (k, q1, r1)
m
∏

l=2

m0 [ql]m0 [rl]
(9)

where:

F (k, q1, r1) =















m0 [q1]m0 [r1] , for k = 4
m0 [q1]m1 [r1] , for k = 3
m1 [q1]m0 [r1] , for k = 2
m1 [q1]m1 [r1] , for k = 1

(10)

M0 represents the length of the impulse response m0,M1the length of m1

and the numbers of the first two groups of convolutions in relation (7) are
given by the relation:

M (k) =















M0, for k = 4
M0, for k = 3
M1, for k = 2
M1, for k = 1

and N (k) =















M0, for k = 4
M1, for k = 3
M0, for k = 2
M1, for k = 1

(11)

In conformity with (7), each pdf of the wavelet coefficients is a sequence of
convolutions. Hence, the random variable representing the wavelet coeffi-
cients can be written like a sum of independent random variables. So, the
central limit theorem can be applied. This is the reason why the pdf of the
wavelet coefficients tends asymptotically to a Gaussian, when the number
of convolutions in (7) (the DWT iterations number) tends to infinity. This
number depends on the mother wavelets used and on the number of iterations
of the DWT. For mother wavelets with a long support, this number becomes
large very fast (for a small number of iterations). The mother wavelet with
the shortest support is the Haar mother wavelets. We have computed, using
the relation (7), the pdfs of the coefficients of the 2D DWT of an image, con-
taining a noise distributed following a log − gamma distribution, using the
Haar mother wavelets. The support of the mother wavelets used in practice
is longer than the support of the Haar mother wavelets, considered in this
theoretical case. The difference between the pdfs of the wavelet coefficients
obtained after the second iteration and Gaussians is small in this case. So,
after two iterations, the pdfs of the wavelet coefficients can be considered
Gaussians. For the first two iterations, heavy-tailed models must be con-
sidered. Finer analysis, measuring the distance between the real pdfs and
Gaussians, are performed in [Foucher and al., 2001], [Achim and al., 2003]
and [Xie and al., 2002].
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4 The correlation of the wavelet coefficients

The input image, x, represents, in general, the sum of the useful image, s, and
of the noise image, n. Because these two random signals are not correlated,
the correlation of the wavelet coefficients of the image x, is the sum of the
correlations of the wavelet coefficients of the useful image and of the noise
image. The correlation function of the wavelet coefficients can be computed
using the following relation:

Γ
xDk

m
[n1, n2, p1, p2] = E

{

xD
k
m [n1, p1]

(

xD
k
m [n2, p2]

)∗

}

=

∫

R4

E {x (τ1, τ2)} · ψ
k∗
m,n1,p1

(τ1, τ2) · ψk
m,n2,p2

(τ3, τ4) dτ1dτ2dτ3dτ4 (12)

or:

Γ
xDk

m
[n1, n2, p1, p2] =

1

4π2

∫

R2

γx

(

2−mν1, 2
−mν2

)

·

·
∣

∣α2

{

ψk (ν1, ν2)
}∣

∣

2
· e−j[ν1(n2−n1)+ν2(p2−p1)]dν1dν2 (13)

where the first factor under the integral from the right hand side represents
the power spectral density of the input image and the second factor represents
the power spectral density of the one dimensional mother wavelets used. In
the following, the influence of each of these two factors will be analyzed. For
the beginning, the influence of the first factor is considered. If the input
image is a white noise, with a known variance, z, it can be written:

γn

(

2−mν1, 2
−mν2

)

= z (14)

and the expression of the wavelet coefficients of the input noise image corre-
lation function becomes:

Γ
nDk

m
[n1, p1] = z · δ [n1] · δ [p1] (15)

This relation was obtained applying some very well known results from har-
monic analysis: the Wiener-Hincin identity and the symmetry theorem. A
magic property of the orthogonal wavelet bases (the samples of the correla-
tion functions of the corresponding mother wavelets and scaling functions,
taken at integer moments, are discrete-time unit impulses) was also used.
Hence, the correlation of the wavelet coefficients of a white noise image do
not depends on the regularity of the one dimensional mother wavelets used.
The same result can be obtained taking in (13) the limit for m (number of
iterations) tending to infinity. Indeed, under the integral from the right hand
side of (13), only the power spectral density of the input image depends on
m. After the limit computation, this function becomes a constant, like in the
case when the input image is a white noise. Asymptotically, the 2D DWT
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transforms every colored noise into a white one. Hence this transform can
be regarded as a whitening system, for any regularity of the one dimensional
mother wavelets used. So, the wavelet coefficients sequences of the noise
component of the input image are white noise sub-images, having the same
variance. In the following, some considerations about the influence of the
second factor of the product under the integral from the right hand side of
the relation (13), will be made. This second factor takes into account the
specific of the one dimensional mother wavelets used. It explains how the
regularity of the wavelet decomposition affects the coefficients correlation. It
can be proved that the convergence speed to a white noise (when m tends
to infinity) increases when the regularity (the length of the filters m0 and
m1) increases. So, the convergence speed to a Gaussian white noise can be
increased using one dimensional mother wavelets with higher regularity. The
first and second order moments of the wavelet coefficients can be computed
using the following relations.

E
{

xD
k
m [n1, p1]

}

= E

{
∫

R2

x (τ1,τ2) · ψ
k∗
m,n1,p1

(τ1, τ2) dτ1dτ2

}

= (16)

=

{

0, k = 1, 2, 3
2m · µx, k = 4

Only the means of the images formed with the approximation wavelet
coefficients are not nulls. The mean of the DWT of the noise component of
the input image is given by the relation:

E
{

nD
k
m [n1, p1]

}

=

{

0, k = 1, 2, 3
−2m · µn, k = 4

(17)

In practice the number of iterations of the DWT is important. The dimen-
sions of the image built with the approximation wavelet coefficients obtained
after the last iteration are smalls. This is the reason why this image is not
filtered in the denoising applications based on the use of the DWT. The
variance of the wavelet coefficients of the noise component can be computed
using the relation:

σ2
xDk

m

= E
{

∣

∣

xD
k
m [n1, p1]

∣

∣

2
}

= Γ
xDk

m
(0, 0) =

=
1

4π2

∫

R2

γx (2mν1, 2
mν2) ·

∣

∣α2

{

ψk (ν1, ν2)
}
∣

∣

2
dν1dν2

The DWT of the input noise component, n, has a variance given by:

σ2
nDk

m

=

{

z, k = 1, 2, 3
z − 22mµ2

n, k = 4
(18)

This variance is constant for all the images formed using detail wavelet coeffi-
cients. Hence, it can be estimated using the first HH image. This estimation
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can be used for the filtering of any other detail image, formed with the detail
wavelet coefficients obtained at any iteration. The correlation of the DWT
of s is given by:

Γ
sDk

m
[n1, p1] = 22m · Γs [2mn1, 2

mp1] (19)

its mean by:

E
{

sD
k
m [n1, p1]

}

=

{

0, k = 1, 2, 3
2m · µs, k = 4

(20)

and its variance, by:
σ2

sDk
m

= 22m · σ2
s (21)

So, the variance of the detail wavelet coefficients sequences obtained start-
ing from the useful component of the input image increases when the iteration
index increases. All the relations established in this paragraph were used in
[Isar and Moga, 2004], for the design of a denoising system for SONAR im-
ages.

5 Conclusion

A complete analysis of the 2D DWT was reported. It is proved that the 2D
DWT asymptotically converges to the 2D Karhunen-Loève transform. So,
the DWT of a colored noise image, with a given probability density function,
converges asymptotically to a white Gaussian noise. This is a generalization
of the results reported in [Isar and al., 2002], where the case of the 1D DWT
was considered. Another reference for the statistical analysis of the 1D DWT
is [Pastor and Gay, 1995]. The asymptotic analyses of 1D DWT and 2D DWT
have similar results. The pdfs of both wavelet transforms converge asymp-
totically to Gaussians. Both wavelet transforms converge asymptotically to
the corresponding Karhunen-Loève transforms, for any regularity of the one
dimensional mother wavelets used. The convergence speed to a Gaussian
white noise can be improved increasing the regularity of the one dimensional
mother wavelets used. Both wavelet transforms convert a white noise into a
white noise with the same variance. All the other results of the statistical
analyses of the 1D DWT and 2D DWT (pdfs, correlations, moments) are
also similar. Based on the statistical analysis reported in this paper, a new
denoising system was built in [Isar and Moga, 2004]. Its performances for
the treatment of the SONAR images are also reported. This statistical anal-
ysis can be used for compression or watermarking purposes also. Statistical
analyses of other wavelet transform will be reported soon.
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