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Université Paris 7, case 7113, 2 place Jussieu, 75251 Paris, France
(e-mail:
camproux@ebgm.jussieu.fr,guyon@ebgm.jussieu.fr,tuffery@ebgm.jussieu.fr)

2 Institut de Pharmacologie Moleculaire et Cellulaire
UMR 6097 CNRS / UNSA
660 route des Lucioles
06560 Sophia Antipolis
(e-mail: gautier@ipmc.cnrs.f)

Abstract. Understanding and predicting protein structures depends on the com-
plexity and the accuracy of the models used to represent them. We have setup a
Hidden Markov Model to optimally compress three dimensional (3D) conformation
of protein into a structural alphabet, i.e. a library of exhaustive and representa-
tive states (describing short fragments) learnt simultaneously with connection logic.
The discretization of protein backbone local conformation as a series of states re-
sults in a simplification of protein 3D coordinates into a unique unidimensional
(1D) representation. We present some evidence that such approach can constitute
a very relevant way to the analysis of protein architecture in particular for protein
structure comparison or prediction.
Keywords: Hidden Markov Models, structural alphabet, protein structural orga-
nization.

1 Introduction

The recent genome sequencing projects [Waterston et al., 2002] have pro-
vided sequence information for large number of proteins. In most cases, an
accurate 3D structural knowledge of the proteins is necessary for a detailed
functional characterization of these sequences. However, even in the days of
high-throughput methods, experimental determination of protein structures
by X-ray crystallography or NMR is quite time-consuming. Thus, there is
an increasing gap between the number of available protein sequences and ex-
perimentally derived protein structures, which makes it even more important
to improve the methods for predicting protein 3D structures. The structural
biology community has long focused on the very hard task of developing algo-
rithms for solving the ab initio protein folding problem - namely, predicting
protein structure from sequence. In its initial phase, the exploration of pro-
tein structure consisted in simplifying the 3D structure into secondary struc-
tures, included the well-known repetitive and regular zone - the α-helix (30%)
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of protein residues and the β-sheet (20%). The remaining elements constitute
a category, often considered as variable (50% of the structures). With the
increasing of available 3D structures of proteins, many studies [Unger et al.,
1989],[Rooman et al., 1990],[de Brevern et al., 2000],
[Micheletti et al., 2000],[Kolodny et al., 2002] have focused on the identifica-
tion of a more detailed but finite set of generic protein fragments. Despite the
fact that such libraries provide an accurate approximation of protein confor-
mation, their identification teaches us little about the way protein structures
are organized. They do not consider the rules that govern the assembly pro-
cess of the local fragments to produce a protein structure. An obvious mean
of overcoming such limitations is to consider that the series of representative
fragments that can describe protein structures are in fact not independent
but governed by a Markovian process. For this purpose we have used Hid-
den Markov Models (HMM). HMM have been applied in several area of
computational biology, for example to model protein families, to construct
multiple sequence alignment or to determine protein domain in a query se-
quence [Krogh et al., 1994],[Durbin et al., 1998],[Bateman et al., 2004]. In
this study, we apply HMM to identify a library of representative fragments
and their transition process, called Structural Alphabet (SA) or HMM-SA.
Such an approach can constitute a very relevant way to the analysis of protein
architecture in particular for protein structure comparison or prediction.

2 Materials and Methods

2.1 Datasets and describing three dimensional conformations

The extraction of SA is performed from a collection of 1429 non-redundant
protein structures presenting less than 30% sequence identity. The structures
are described using the α Carbons (Figure (a.1)), as series of overlapping
fragments of 4 residue length (Figure (a.2)) [Camproux et al., 1999]. Each
fragment h is described by a 4-descriptors vector y(h) with the three distances
between the non consecutive α Carbons, i.e. d1(h)= d{Cα1(h) - Cα3(h)},
d2(h)=d{Cα1(h) - Cα4(h)}, d3(h)=d{Cα2(h) - Cα4(h)}, where C1,..,4 denotes
the 4 residues of fragment h, and the oriented projection P4(h) of the last
alpha-carbon Cα4(h) to the plane formed by the three first ones, as shown
in Figure (a.3). The collection of 1429 proteins represent a total of 332493
four-residues fragments.

2.2 Identification of the optimal structural alphabet (SA)

Models
Suppose that polypeptidic chains are made up of representative fragments
of (R) different types {S1, S2, ..., SR}. We then assume that there are (R)
states of the model. Each state is associated with a multi-normal function
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Fig. 1. Encoding of 3D conformation of proteins using HMM-SA with 27 states:
right part “3D structural space” represents the polypeptidic chain of protein 3chy
(a1) scanned in overlapping windows that encompassed 4 successive-carbons Cα

(a2), thereby producing a series of four-residue fragments. Each fragment is de-
scribed by a vector of four-descriptors (a3). Center part: Figure b1 represents the
BIC evolution versus the number of states considered, Figures b2 and b3 illustrate
the optimal HMM-SA corresponding to both 27 average four-residue fragments as-
sociated to 27 states and transition matrix between states. Bottom part represents
the corresponding encoded chain 3chy (c1) as a states series.
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of parameters θ describing the descriptors and their variability. We consider
two types of model to identify a SA corresponding to R states: a process
without memory or a process with memory of order 1.
(i) Model without memory (order 0), assuming independence of the R states
is identified by training simple finite Mixture Models (MM) of R multi-normal
distributions.
(ii) Model with memory (order 1) is identified, by training a Hidden Markov
Model. Here, the aim is to a learn hidden sequence of states. The succession
of underlying states {x1, x2, ..., xN} emits the series of vectors {y1, y2, ..., yN},
describing consecutive overlapping fragments of the proteins, via a multi-
normal density bSi

(y) of parameters θi associated to each state Si,1≤i≤R. We
assume a common state dependence process for all polypeptidic chains gov-
erned by a Markov chain. The evolution of the Markov chain is completely
described by:
1) the law V = V (i) of the initial state of each polypeptidic chain, i.e. the
probability that a polypeptidic chain starts in each of the R different states
2) the matrix of transition probabilities Π = (πii′ )1≤i,i′≤R between R differ-
ent states of the Markov chain, where πii′ = P (Xj = S′

i | Xj−1 = Si) is the
probability for different proteins to evolve from state Si to S′

i at any position
j. For a given set of proteins and a given number (R) of states, unknown
parameters λ = (Π, V, θ) of the selected model are estimated with an Expec-
tation and Maximization (EM) algorithm [Baum et al., 1970] applied on the
complete likelihood.

Complete likelihood of N four-residue fragments {y1, y2, ..., yN} describing a
protein of N+3 residue

V (y1, y2, ..., yN |λ) =
∑

{x1,x2,...,xN}

V (x1)bx1
(y1)

N−1∏

t=1

πxtxt+1
bxt+1

(yt+1) (1)

For practical details on application to protein structures, see
[Camproux et al., 1999].

Encoding proteins using Viterbi algorithm
Our ultimate goal is to reconstruct the unobserved (hidden) states sequence
{x1, x2, ..., xN} of the polypeptide chains, given the corresponding four-dimensional
vectors of descriptors {y1, y2, ..., yN}, and to provide a classification of suc-
cessive fragments in R states. For a given 3D conformation and a selected
model (fixed number R of states), the corresponding best state sequence
among all the possible paths in {S1, . . . , SR}

N can be reconstructed by a
dynamic programming algorithm based on Markovian process (Viterbi algo-
rithm [Rabiner, 1989]).

Statistical criteria to determine the optimal number of states
Structural alphabets of different size (R), noted SA−R are learnt using HMM
and MM by progressively increasing R and compared using Bayesian Infor-
mation Criterion (BIC, [Schwartz, 1978]).



HMM structural alphabet for proteins 131

2.3 Assessing the discretization of protein structures

For a given state, the average Cα Root-Mean-Square deviation (RMSd) be-
tween Cα coordinates, that is an euclidean distance, of the fragments to their
centroid is used to measure the structural dispersion of each state. To recon-
struct the protein 3D structures from their description as a series of states,
and to keep some comparison possible, we use the building procedure em-
ployed by Kolodny et al. [Kolodny et al., 2002]. Briefly, the fragments are
assembled using an iterative concatenation procedure to adjust 3D confor-
mation.

2.4 Quantifying structure similarity

During the HMM-SA encoding of proteins of known structures, the prob-
abilities of substituting one state for another are directly provided by the
forward-backward algorithm [Rabiner, 1989]. A lod-score or substitution
matrix is derived from these probabilities:

S(i, j) = ln[
P (Si, Sj)

P (Sj)P (Sj)
] (2)

which can be rewritten as

S(i, j) = ln[
P (Si|Sj)

P (Sj)
] (3)

with P (Si|Sj), the probability of letter Si substitutes for letter Sj at one
position and P (Sj), the probability of state Sj (computed as the proportion
of observed letter Sj). This lod-score matrix quantifying similarity between
states is shightly modified. The score values S(i,j) get to −∞ when the
substitution of state S(i) by S(j) is impossible. All the finite values of S(i,j)
are shifted and made positive, and the infinite one are replaced by large
negative values.

2.5 Measuring sequence-structure consistency

Amino acid / state dependence can be learnt a posteriori from the database
of 1429 proteins encoded in HMM-SA and the corresponding amino acid se-
quences. The specificity of each state in terms of amino acid is assessed using
the “relative entropy” [Kullback and Leibler, 1951].
These amino acid sequence / states dependence can be used to quantify the
consistency of a candidate 3D structure encoded in HMM-SA and its cor-
responding amino acids sequence. Emission probabilities of 20 amino acids
aj,1≤j≤20 from each state Si,1≤i≤R : P (aj |Si) are introduced in the HMM
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to compute the likelihood of an amino acids sequence {a1, a2, ..., aN} corre-
sponding to a structure encoded in states sequence x={x1, x2, ..., xN}.

V (a1, a2, ..., aN , x|λ) = V (x1)P (a1|x1)

N−1∏

t=1

πxtxt+1
P (at+1|xt+1) (4)

3 Results

3.1 HMM-SA validation

HMM-SA is few dependent on the learning set
We learn SA of increasing sizes using either HMM or MM, and we compare
them on the basis of their goodness of fit (Figure (b.1)). The influence of
the Markovian process is large, as illustrated by the very different behaviors
of the BIC associated with MM0 or HMM1. For MM, no BIC optimum is
reached until alphabet sizes of 70 whereas for HMM, an optimum is reached
for a number of states of 27 (SA-27), larger than that obtained using MM,
which means a better fit of the data using HMM. Interestingly, the Markov
classification takes advantage of information implicitly contained in the suc-
cession of the observations to greatly reduce the number of states, keeping
a minimal representativity for each (at least 1.5%). Similar results are ob-
tained using two independent learning sets of 250 proteins with similar BIC
curves evolution. The optimum is reached for 27 states in both cases, and
we find that the two SA-27 very similar. It follows that, at the optimum, the
HMM-derived structural alphabet (HMM-SA) is very weakly dependent on
the learning set, which in turn suggests that the learnt model can be consid-
ered as representative of all protein structures.

Geometrical and logical description of the structural alphabet
The 27 identified states are denoted as structural letters: [a, A, B,..., Y, Z].
The set of letters, sorted by increasing stretches in figure (b.2) and their tran-
sitions constitute the SA The “local fit approximation” is low, as quantified
by the average alpha-carbon RMSd to the centroid associated with each state
(0.23 ± 0.14 Å). SA-27 shown very reasonable performance (RMSd value less
than 1Å) in terms of reconstruction of the whole protein structure accuracy,
compared to other recent libraries fragments optimized in a purpose of recon-
struction [Micheletti et al., 2000, Kolodny et al., 2002]. Concerning descrip-
tion of logic of protein architecture, 66% of 729 transitions between states
have probabilities less than 1% (see Transition matrix between 27 states in
b.3), i.e.. We observe the existence of pathways between the states, that
obey some precise and unidirectional rules. Looking in detail, we observe
that the states associated with close shapes have different logical roles. For
instance, the two closest states [A, a] in term of geometry, close to canonical
alpha helix, are distinguished by different preferred input and output states.
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Moreover, the learning process attempts to optimize the likelihood associ-
ated with the entire trajectories of the proteins, resulting in propagation of
such long range conditioning to the short range constraints that are learnt.
For instance, three major types of alpha-helices categorized as linear, kinked
or curved by Kumar and Bansal [Kumar and Bansal, 1998], seem identi-
fied in HMM-SA by [AAAAAAAAAA] series, [AAAAVWAAAA] series and
[aaaaaaaaaa] series. These results are detailed in [Camproux et al., 2004].

3.2 HMM-SA application: HMM structural alphabet as a
general concept to simplify 3D protein structure analysis ?

Discretization of 3D structural space of proteins in SA space
Subsequently, HMM-SA provides some kind of compression from the 3D pro-
tein coordinate space into the 1D structural alphabet space, see Figure 1. We
have explored two directions in which this facility could be of interest.

Categorizing structural similarity
The detection and analysis of structural similarities of proteins can provide
important insights into their functional mechanisms or relationship and offer
the basis of classifications of the protein folds. The global 3D alignment of
two proteins is NP-hard [Lathrop, 1994]. Therefore, approximate methods
have been proposed to achieve fast similarity searching, based on the direct
consideration of protein alpha-carbon coordinates [Gibrat et al., 1996],
[Holm and Sander, 1993, Shindyalov and Bourne, 1998]. Using HMM model,
the lod-score matrix of similarity between states (Eq(2)) allows to quantify
the similarity of protein fragments encoded as different series of states. It
is possible to use it with classical methods developed for the amino acid se-
quences similarity search and thus to reduce 3D searches as a 1-dimensional
sequence alignment problem [Guyon et al., 2004]. Although we currently ob-
tain performance poorer than pure 3D methods, this approach can perform
fast 3D similarity search such as the extraction of exact words using a suffix
tree approach, or the search for fuzzy words and is very promising in a per-
spective of combining with prediction procedure.

Applying sequence-structure consistency measures
All the states of SA-27 have some significant amino acid sequence specificity
compared to the profiles of the collection of 1429 protein fragments (“relative
entropy”, p<0.001). Ab initio prediction is commonly viewed as composed of
two problems (1) generating candidate folds, called decoys ; and (2) devising a
scoring function that discriminates between near native folds and other non-
native folds amongst the decoys [Kolodny et al., 2002]. Concerning point
(2), we can use significant dependence between states and sequence (Eq(3))
to evaluate the consistency of a set of decoys encoded in SA-27 with its
corresponding amino acids sequence. Preliminary results to discriminate 3D
decoys proposed in CASP6 (Critical Assessment of Techniques for Protein
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Structure Prediction) show some correlation with RMSd for decoys library
and this work is in progress.

4 Discussion and perspectives

In the present study, we have discussed an HMM derived 27 states SA based
on a Markov process of order 1. Higher order Markovian dependence could
be considered, but at the cost of a much larger number of parameters, which
may pose practical computational problems. HMM-SA fits well the previ-
ous knowledge related to protein architecture organization and seems able
to grab some subtle details of protein organization, while using a reduced
number of states. Results on dependence between letters and amino acid
sequence confirms that, despite we have learnt SA using only geometric in-
formation, we have not over-split sequence information and that all states
present some sequence signature. The resulting 1D representation of protein
structure can be applied to a large variety of problems recurrent to the field
of protein structure analysis and prediction. Here, we have presented some
evidence of its relevance for categorizing structural similarity, or measuring
some sequence / structure consistency. Work is under progress to enlarge
this to fold classification and prediction.
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