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Abstract. Incorporating marker information into analysis of lifetime data is
a topic treated in the current literature in many different ways. In this paper
we apply a Bayesian approach to the model introduced by Whitmore, Crowder and
Lawless in 1998. In their model they assumed that observable marker process and
a latent “true” degradation process together follow a bivariate Wiener process with
marker value available at the failure time with censoring. Using data augmenta-
tion method for the latent degradation for surviving subjects we construct a full
Bayesian model with a closed form posterior distribution. As a sampling procedure
we use Metropolis-Hastings within Gibbs algorithm. The model and estimating
procedure are applied to a simulated data set from the original article by Whit-
more, Crowder and Lawless in order to evaluate the performance of our algorithm.
Our method appears to work well, while allowing also to incorporate prior informa-
tion on the parameters of the model, which can be available from previous studies
in similar populations.
Keywords: Marker, Degradation, Latent Models, Bayesian Inference.

1 Introduction

1.1 Markers, degradation and thresholds

Many articles in the literature have focused on incorporating auxiliary in-
formation, such as markers, in modelling lifetime data. For good reviews,
see Fleming, Prentice, Pepe and Glidden [Fleming et al., 1994], Lefkopoulou
and Zelen [Lefkopoulou and Zelen, 1995], Jewell and Kalbfleisch [Jewell and
J.D. Kalbfleisch, 1996], Shi, Taylor and Munoz [Shi et al., 1996], among oth-
ers. On the basis of both proportional and additive hazards models, Lin,
Fleming and DeGruttola [Lin et al., 1997] incorporated a time-varying co-
variate marker as a marker process and considered a variety of models for
the marker process.

Another school of thought, represented by the work of Whitmore [Whit-
more, 1979], [Whitmore, 1995], Doksum and Hoyland [Doksum and Hoyland,
1992], Doksum and Normand [Doksum and Normand, 1995], Lu [Lu, 1995],
and Whitmore and Schenkelberg [Whitmore and Schenkelberg, 1997], con-
siders several models that relate the occurrences of failure events directly to
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an observable degradation process. An assumption in many of these mod-
els is that an event occurs when observable degradation reaches a threshold.
Hence, these models were also referred to as “first-passage time”, or “first-
hitting time” models (Lee and Whitmore [Lee and Whitmore, 2003]).

Instead of a single observable degradation process to model event occur-
rences, Whitmore, Crowder and Lawless [Whitmore et al., 1998] (abbreviated
herein as WCL) introduced the joint distribution of an observable marker pro-
cess and an unobservable degradation process. Specifically, they assume that
the observable marker process and a latent but unobservable “true” degrada-
tion process together follow a bivariate Wiener process. This bivariate model
deals with more realistic situations where failure is not deterministically re-
lated to an observable marker. The bivariate model also allows us to evaluate
the reliability of the observed marker values in the assessment of the latent
degradation of a subject. Although most of the earlier papers assume that
degradation follows a Wiener process, other forms of degradation processes
have recently been considered. Lawless and Crowder [Lawless and Crowder,
2004] used a gamma increment process; and Aalen and Gjessing [Aalen and
Gjessing, 2004] modelled survival data using an Ornstein-Uhlenbeck process.

1.2 Motivation of the proposed Bayesian methods

Most of the papers listed above formulated their models and estimation proce-
dures using a conventional frequentist paradigm. On the basis of the univari-
ate degradation model discussed by Lu [Lu, 1995], Pettit and Young [Pettit
and Young, 1999] adopt a conventional Bayesian approach. Using uniform
priors for the threshold level and proper priors for parameters of degradation,
Pettit and Young derived inferences for parameters of both the degradation
process and the threshold level to make predictions regarding future events.
They used a Gibbs sampler to sample from the posterior distributions of
model parameters and estimated predictive distributions of failure times. For
a newly enrolled subject, they estimated future degradation levels at different
times using estimated parameters averaged over all samples. They applied
their methods to a simulated dataset obtained from Lu [Lu, 1995] and com-
pared their results to those obtained by using ML estimators. The paper
by Pettit and Young, however, considered only the univariate degradation
model.

In this article, we consider the use of Bayesian inference procedures for
joint modelling of marker and degradation processes using the bivariate
methodology introduced by Whitmore, Crowder, and Lawless (WCL) [Whit-
more et al., 1998]. Unlike the conventional Bayesian methods adopted by
Pettit and Young, we needed to incorporate the data augmentation tech-
nique into our Bayesian models in order to derive the likelihood function in
closed form.
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We use a full Bayesian approach to make inferences on parameters of both
the marker and degradation processes. Also, for surviving subjects, we can
model the distribution of residual survival times. For newly enrolled subjects,
we can predict their failure times. For subjects expected to survive until a
given time with a given marker value, we can predict degradation levels. We
applied our model to a simulated dataset from WCL.

2 Short Review of the Bivariate Marker and

Degradation Model

The bivariate threshold model introduced by WCL assumes that every
subject is represented by a path of a bivariate Wiener process W(τ) =
{X(τ), Y (τ)}, τ > 0, with initial values W(0) = {X(0), Y (0)} = {0, 0}, drift

µ = (µX , µY ) with nonnegative µX , and covariance matrix Σ =
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The component X(τ) represents the latent process of an unobservable degra-
dation (disease) state of a subject and component Y (τ) denotes a marker
process that is correlated with the degradation process X(τ). The strength
of the association between the two components of the bivariate Wiener pro-
cess is described by the correlation coefficient ρ. The subject fails when the
degradation process X(τ) reaches a failure threshold a > 0 for the first time.
We denote this first-hitting time by the random variable S. It is well known
that, when X(τ) follows a Wiener process, its first-hitting time S has an
inverse Gaussian (IG) distribution with corresponding parameters (see, e.g.,
Chhikara and Folks[Chhikara and Folks, 1989]).

Each subject is observed during a fixed period of time [0, t] with one of
two possible outcomes:
(1) failing subject – subject fails at some time s ∈ [0, t];
(2) surviving subject – subject is alive and censored at the time t.

For surviving subjects, the marker component Y (·) is measured at the end
of the observation period t. For failing subjects, the marker component Y (·)
is measured at the failure time.

As a result, the observed data consists of the following forms.
(1) For failing subjects:

i ) failure time S = s < t,the first-passage time for the degradation X ,
ii ) value y = Y (s), of the marker component Y at the failure time s ,
iii ) X(s) = a, since failure is the first–passage to the threshold a;

(2) For surviving subjects:

i ) time t < S, which implies that X(τ) < a for τ ∈ [0, t],
ii ) value y(t) of the marker component Y at the time t.

The model also assumes that the latent degradation component has a non-
negative drift µX ≥ 0 so as to ensure that all subjects will fail within a finite
time period with probability 1.
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The corresponding probability distributions for failing and surviving sub-
jects were derived in WCL.

3 The Proposed Bivariate Model with Data

Augmentation for the Degradation Process

Two approaches are possible to relate survival information to the latent degra-
dation.

i ) Consider only the observed data, and obtain a marginal p.d.f. of
the marker component for a surviving subject (see [Whitmore et al.,
1998], 2.10). This strategy will result in a rather complicated combina-
tion of the p.d.f. and c.d.f. of normal distributions with different means
and covariances;

ii ) Alternatively, one can augment unobserved degradation values for sur-
viving subjects and treat these values as additional parameters.

In this article, we will take the second approach and construct a full
Bayesian model based on complete likelihood function.

3.1 Data augmentation

Assume that there are n independent subjects, and each subject could be
observed during a fixed time period [0, Ti], i = 1, . . . , n. Let Si denote
the random failure time variable for the ith subject, i = 1, . . . , n. If the
ith subject failed at time Si = si ≤ Ti, the marker value Y (si) = yi is
measured. If the ith subject did not fail during the observation period, then
the survival time Si is unobserved, and the marker value is measured at Ti

with Y (Ti) = yi. Let δi = I(Si < Ti), i = 1, . . . , n, be a censoring indicator.

We define a stopping time for the ith subject as ti =

{

si, if δi = 1,
Ti, if δi = 0.

Thus, for n subjects, there are three vectors of length n of completely
observed data, as follows.

• a vector of stopping times t = (t1, t2, . . . , tn),
• a vector of censoring indicators δ = (δ1, δ2, . . . , δn),
• a vector y = (y1, y2, . . . , yn) of values of the Y –component of the Wiener

process W(τ) at stopping times.

The latent degradation component X is observed only for the failed (δi =
1) subjects and is equal to the failure threshold a. Thus the observed data
are

Dobs = (t, y, δ, (X(ti) : δi = 1)).

To get the “complete” data, we augment the observed data with latent degra-
dation levels for surviving subjects as described below.
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The augmented vector of the X–components for all n subjects is defined

as x = (x1, x2, . . . , xn), where xi =

{

a, if δi = 1,
augmented value xi, if δi = 0.

Thus, through data augmentation, we get an additional parameter vector
xs = {xi : δi = 0} of length n − k, where k =

∑n
i=1 δi.

3.2 Likelihood function for augmented data

Using the “complete” data consisting of D = (t, x, y, δ), we can easily derive
from WCL (2.5), (2.7) and (2.12), and the condition µX ≥ 0, the likelihood
function for the augmented set of parameters µ, Σ, a, xs:

L (µ, Σ, a, xs | Dobs) = (1)

×
∏

δi=1

pf (yi, ti | µ, Σ, a)
∏

δi=0

ps(xi, yi, ti | µ, Σ, a)I(µX ≥ 0).

Examination of densities pf (· | ·) and ps(· | ·) shows that they are
overparameterized, and, without loss of generality, we can fix the failure
threshold a = 1. To simplify notation, we denote the bivariate vector
wi = (xi, yi), i = 1, . . . , n. Thus

L (µ, Σ, a, xs | Dobs) = L(µ, Σ, xs | Dobs) =

=
ak

(2π)n|Σ|n/2

n
∏

i=1

t−1−δi

i · exp

(

−
n
∑

i=1

(wi − tiµ)Σ−1(wi − tiµ)′

2ti

)

I(µX ≥ 0)

×
∏

δi=0

((

1 − exp

(

−2a(a − xi)

tiσXX

))

I(xi ≤ a)

)

. (2)

The introduction of augmented latent variables resulted in a likelihood
function with a closed form and three groups of parameters, namely a 2–
dimensional vector of drift parameters µ, a 2× 2 symmetric positive definite
covariance matrix Σ, and a (n− k)–dimensional vector of augmented degra-
dation values xs.

4 The Prior and Posterior Distributions

To facilitate a Bayesian inference procedure, we need to specify prior dis-
tributions. Note, that conditionally on µ and Σ the prior distribution of
augmented vector xs is fully accounted for by the Wiener process model. We
propose to use independent prior distributions for each group of parameters
µ and Σ because they are related to different features of the trajectories of
the Wiener process: drift describes the average path, whereas variance is
responsible for the variability of each individual path. Therefore, the joint
prior distribution has the following form:

π(µ, Σ, xs) = π(µ)π(Σ)π(xs | µ, Σ). (3)
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Taking into account that the distribution of xs is defined by the model,
the joint posterior distribution has the form

ppost(µ, Σ, xs | Dobs) ∝ L(µ, Σ, xs | Dobs) · π(µ)π(Σ). (4)

It could be shown that, under some weak restrictions on observed data,
and proper π(µ) and π(Σ), the joint posterior distribution will be proper.

The proper prior distributions could be made by the choice of hyperpa-
rameters to be noninformative or informative, depending on availability of a
priori information on marker behavior or/and patient population. Since the
main part of the likelihood has a Gaussian form (though truncated for µX

in the current formulation of the model), we suggest using traditional prior
distributions for the class of Gaussian models:

π(µ) ∝ exp

(

−1

2
(µ − µ0)Σ

−1
0 (µ − µ0)

′

)

I(µX ≥ 0), (5)

π(Σ)simInverse Wish2(l, R). (6)

5 Predictive distributions of survival times

For surviving subject i, the predictive distribution for residual time sres
i is :

p(sres
i | Dobs) =

∫ ∫ ∫

p(sres
i | µ, Σ, xi)ppost(µ, Σ, xs | Dobs)dµ dΣ dxs. (7)

where p(sres
i | µ, Σ, xi) =

a − xi
√

2πσXX(sres
i )3

exp

(

− (a − xi − µXsres
i )2

2σXXsres
i

)

.

The integral over the measure generated by the joint posterior distribution
of the parameters can be estimated as a mean of the density p(sres

i | µ, Σ, xi)
over a sample from the joint posterior distribution.

For a newly enrolled subject, the predictive distribution for survival time
p(s | Dobs) have the same analytical forms as for residual survival times with
initial degradation level x(0) = 0. The same estimation procedure applies.

6 Computational Implementation

We designed our computational model to be analytically convenient for
the implementation of a Gibbs sampler to draw samples from the joint pos-
terior distribution. We suggest using a form of Gibbs sampling, that allows
sampling from conditional distributions for blocks of variables. There are
three natural groups of parameters: µ, Σ, and xs. In section 4 we specified
the joint prior distribution for the parameters. From the analytical form of
the joint posterior distribution we can see that the conditional posterior dis-
tributions for parameters µ and Σ are the products of respective conditional
posterior distributions with flat priors and the respective prior distributions.
The conditional posterior distribution for the vector of augmented values xs

is a product of conditional posterior distributions of its components.
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6.1 Conditional posterior distributions for µ, Σ, and xs

It can be easily shown that the conditional posterior distribution for µ with
a flat improper prior is a truncated (µX ≥ 0) bivariate normal distribution
with location parameter µflat = w̄/t̄, covariance parameter Σµ = 1

nt̄Σ,
where w̄ = 1

n

∑n
i=1 wi, t̄ = 1

n

∑n
i=1 ti.

For priors (5) and (6) the conditional posterior distribution for µ is also
a truncated (µX ≥ 0) bivariate normal with location parameter µ′

post =

Σµpost(Σ
−1
µ µ′

flat + Σ−1
0 µ′

0), covariance parameter Σµpost = (Σ−1
µ + Σ−1

0 )−1.

The convenient way to specify the prior distributions for covariances is to

specify them for the inverse matrices. Let denote Σ−1 = IΣ =

∣

∣

∣

∣

iσXX iσXY

iσXY iσY Y

∣

∣

∣

∣

,

so that ρ = −iσ2
XY /

√
iσXXiσY Y . The kernel for the posterior conditional

distribution of IΣ with a flat prior can be written as

K(IΣ) = |IΣ|n

2

∏

δi=0

(

1 − exp
(

− 2a(a − xi)iσXX(1 − ρ2)

ti

)

)

(8)

× exp
(

− 1

2
tr
(

IΣ · SE
)

)

, where SE =

n
∑

i=1

1

ti
(wi − tiµ)′(wi − tiµ).

For a Wishart prior for IΣ corresponding to (6) with hyperparameters
l,and R the kernel for the posterior conditional distribution of IΣ is

Kpost (IΣ) = |IΣ|n+l−3

2

∏

δi=0

(

1 − exp
(

− 2a(a − xi)iσXX(1 − ρ2)

ti

)

)

(9)

× exp

(

−1

2
tr
(

IΣ · R−1
post

)

)

, where Rpost =
(

SE + R−1
)

−1
.

The kernel for a conditional posterior distribution of the component xi of
the augmented vector xs for a surviving subject i (δi = 0) is

K(xi) = exp

(

− (xi − µX.Y (ti))
2

2tiσXX.Y

)(

1 − exp

(

−2a(a− xi)

tiσXX

))

× I(xi ≤ a),

where µX.Y = µXti + σXY /σY Y (yi − µY ti), σXX.Y = σXX(1 − ρ2). (10)

6.2 Sampling Schemes for the Conditional Posterior

Distributions

As a sampling scheme we propose to use Metropolis-Hastings within Gibbs
(MHwG) algorithm, described in Section 6.2 of Chib and Greenberg [Chib
and Greenberg, 1995], for three “natural” groups of parameters: µ, Σ, and
augmented values xs of the process component X(t) at the censoring time
t. It can be applied to a joint distribution that has one of its conditional
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distributions in an analytical form that makes it difficult to develop a direct
sampling procedure. The MHwG algorithm is a Gibbs sampler that allows
sampling the intractable conditional distribution using a Metropolis-Hastings
algorithm, whereas all other conditional distributions are sampled directly.
For the joint posterior distribution (4) with suggested priors the covariance
matrix of the Wiener process Σ has an intractable conditional posterior dis-
tribution, drift parameter µ could be sampled directly. For independent com-
ponents of vector xs, we construct a convenient rejection sampling scheme.

7 Analysis of Simulated Data Set

In order to test the performance of our Bayesian scheme, we applied it to
the simulated dataset obtained from WCL (see Table 5.1) and compared
their ML estimates of parameters µ and Σ to the estimates based on the
introduced Bayesian procedure. This dataset was generated by simulating
a Wiener process W = {X, Y } with parameters (µX , µY , σXX , σY Y , ρ) =
(.1, 1., .42, .12, .75). Fifty sample paths were generated by running steps with
time increments dt = .01 until the cumulative sums exceeded the threshold
level 1 or the number of steps reached 1000, which was equivalent to truncat-
ing the paths at time T = 10. The generated dataset contains 12 truncated
observations.

Since we were interested in comparing our inference procedure to the max-
imum likelihood estimation of parameters from WCL, we needed to spec-
ify a noninformative set of priors. We chose the parameters for the priors
(5) and (6) to make them noninformative comparing to the data. It can
be shown that the location parameter µ0 = (0, 0) and the covariance ma-

trix Σ0 =

(

100 0
0 100

)

for (5), and l = 3 with the “covariance” matrix

R = 100.0

(

1 −ρ
−ρ 1

)

with ρ = 0 for (6) will be sufficiently noninforma-

tive for the WCL dataset. The correlation 0 here corresponds to an a priori
hypothesis of no association between the marker and the degradation.

The MHwG algorithm was implemented in S-Plus.
We ran one simulation chain of 12,000 iterations, starting with overdis-

persed initial values. We considered the first 2000 iterations a “warm-up
run” and used the next 10, 000 iterations for inference . The plots of traces
of simulated values for parameters µ, augmented latent degradation levels for
survivors at the time of censoring, as well as variances and correlation looked
rather homogeneous, and allowed us to conclude that the simulation chain
has converged.

In Table 1 we present the true parameter values, the ML estimates from
WCL, and the values of parameters µX , µY , σX =

√
σXX , σY =

√
σY Y ,

and ρ estimated from the simulated Markov chain, We remind that the like-
lihood function in WCL is the likelihood for the observed data. Bayesian
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estimates of parameters are sample means based on all simulated samples,
even for parameters with large autocorrelation, because it was shown by S.
N. MacEachern and L. M. Berliner [MacEachern and Berliner, 1994] that
subsampling leads to less efficient estimates. Numbers in parenthesis repre-
sent the standard errors of the estimates based on an estimate of the inverse
observed information matrix for ML estimates from WCL, and the estimates
of the standard deviations of the posterior distributions of parameters. Based
on the full sampled chain we calculated standard deviations as square roots
from variance estimates. Median estimations are also based on the full chain.
High density intervals are estimated by 250–th and 9750–th respective order
statistics.

Table 1. True Values and Estimates for the Parameters of the Process

True Estimates
Values from WCL Bayesian

Parameter ML(SD) Mean(SD) Median 2.5% 97.5%

µX 0.1 0.120(0.023) 0.121(0.022) 0.122 0.077 0.164
µY 1.0 1.012(0.005) 1.012(0.005) 1.012 1.002 1.022
σX .4 0.364(0.039) 0.354(0.036) 0.352 0.289 0.424
σY .1 0.089(0.008) 0.088(0.008) 0.088 0.075 0.107
ρ .75 0.737(0.063) 0.721(0.063) 0.729 0.600 0.828

Analysis of autocorrelation functions of parameter samples for µ, σXX ,
σY Y , ρ and xs indicates that samples of location parameters µ and augmented
degradation levels xs are relatively uncorrelated, whereas samples for σXX ,
σY Y , and ρ have significant autocorrelations.

To check the stability of the behavior of the samples of σXX , σY Y and
ρ we analyzed subsamples of σX , σY and ρ with lags 20 and 50, which are
practically uncorrelated. The results are presented in Table 2. It can be

Table 2. Comparison of Estimates σX , σY and ρ by subchains

True Estimates
Values from WCL Full Chain Every 20th Every 50th

Parameter ML(SD) Mean(SD) Mean(SD) Mean(SD)

σX .4 0.364(0.039) 0.3539(0.0358) 0.3529(0.0355) 0.3515(0.0344)
σY .1 0.089(0.008) 0.0882(0.0084) 0.0878(0.0082) 0.0881(0.0088)
ρ .75 0.737(0.063) 0.7208(0.0633) 0.7206(0.0616) 0.7227(0.0596)

seen that mean values and standard deviations are practically unchanged.
Histograms for subsamples, which are not presented here, are also similar to
those based on full simulated sample.
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