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Abstract. We study an n-unit system. The system functions as long as there is
one unit online and the others in warm standby. When a unit fails it goes to re-
pair. There is a repairman. The units are repaired following the arrival order. The
operational and repair times follow phase-type distributions. The warm-standby
units have a lifetime exponentially distributed. We construct the Markov model
that govers the system and calculate performance measures. The mathematical ex-
pressions are algorithmically and computationally implemented, using the Matlab
programme.
Keywords: Reliability, Availiability, Markov process, Rate of occurrence of fail-
ures (Rocof), Level-Dependent-Quasi-Birth-and-Death process.

1 Introduction

The literature on reliability systems concerning with Markov processes is
related to systems with units having exponentially distributed lifetimes or
extensions of it, such as Erlang, generalized Erlang or hyperexponential. It
is known that the phase-type distributions (PH-distributions) constitute a
large class that contains all the previous ones. This class has been studied
in detail by [Neuts, 1981] and it has been recently applied in reliability by
[Pérez-Ocón and Montoro-Cazorla, 2004a], [Neuts et al., 2000], [Pérez-Ocón
and Montoro-Cazorla 2004b].

When PH-distributions are involved in the modelization of systems, the
generator of the Markov model that governs the system in certain finite cases
has a tri-diagonal block structure, which characterizes the classes of quasi-
birth-and-death processes (QBD processes) and level-dependent quasi-birth-
and-death processes (LDQBD processes).These processes have been studied
in [Latouche and Ramaswami, 1999] and oftenly considered in queueing the-
ory ([Bright and Taylor, 1997], [Naoumov, 1997] and references therein).
However, we have no information concerning the application of these pro-
cesses in reliability theory. Recently, a multiple cold standby system involv-
ing PH distributions and governed by a QBD process has been studied by
[Pérez-Ocón and Montoro-Cazorla, 2004b] . In the present paper we extend
that work considering the system in warm standby, being the lifetime of
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the units in standby exponentially distributed. The stochastic process that
governs the system results then a LDQBD process.

For this system, the stationary probability vector, the availability, and the
rate of occurrence of failures are calculated. In addition, the distributions
of the up and down periods are determined. The steady-state probability
vector is calculated following the general methodology provided by [Naoumov,
1997] for solving linear systems with tri-diagonal block matrices. A numerical
example is presented

We summarize the following definitions used in the paper.

Definition 1 The distribution H(·) on [0,∞[ is a phase-type distribution
(PH-distribution) with representation (α, T ), if it is the distribution of the
time until absorption in a Markov process on the states {1,. . . ,m,m+1} with
generator by blocks

(

T T 0

0 0

)

and initial probability vector (α, αm+1),where α is a row m-vector. We as-
sume that the states {1,. . . ,m} are all transient and m+1 absorbent. The
distribution H(·) is given by

H(x) = 1 − α exp(Tx)e, x ≥ 0.

It will be denoted that H(·) follows a PH(α, T ) distribution.

Definition 2 A level-dependent quasi-birth-and-death process (LDQBD pro-
cess) on the state space E = {(i, j), 0 ≤ i ≤ n, 1 ≤ j ≤ m}, is a Markov
process the infinitesimal generator of which is given by

Q =



















B0,0 B0,1

B1,0 A1
1 A1

0

A2
2 A2

1 A2
0

. . .
. . .

. . .

An−1
2 An−1

1 Bn−1,n

Bn,n−1 Bn,n



















(1)

The general definition of these type of processes can be modified depend-
ing on the boundary behavior. If we put Ak

0 = A0, A
k
1 = A1, A

k
2 = A2,

k = 1, 2, . . . , n − 1, we get a QBD process.

Definition 3 If A and B are rectangular matrices of dimensions m1 × m2

and n1 × n2 respectively, their Kronecker product A ⊗ B is the matrix of
dimensions m1n1 × m2n2, written in compact form as (aijB).
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2 The model

Let us consider a repairable n-system, with one unit online and the rest in one
of the following three situations: in warm standby, being repaired or waiting
for repair. There is one repairman, which serves following the arrival order
of the units. The unit online has a lifetime distributed as a PH(α, T ) with
m operational phases. The units in warm standby have lifetime distributed
following exp(λs). The repair time follows a distribution PH(β, S) with k

repairing phases. The repair is as good as new. These times are independent.
If there is a unit online and a repair is completed, it goes to standby. When
all the units are non-operational and a repair is completed, the repaired unit
becomes the unit online.

For introducing a Markov model it is necessary to identify exponentially
distributed states in the evolution of the system. These will be the operational
and repair phases. Thus, the states will be triplets indicating theses phases
and the number of non-operational units. The state spaces is given by S =
S1 ∪ S2 ∪ S3,with

S1 = {(0, j), 1 ≤ j ≤ m},

S2 = {(i, j, l), 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m, 1 ≤ l ≤ k},

S3 = {(n, l), 1 ≤ l ≤ k},

where i denotes the number of non-operational units, j the operational phase
of the online unit, and l the repair phase of the unit under repair. The system
macro-states are given in the set S = {i, i = 0, 1, . . . , n}.

The infinitesimal generator, Q, is calculated from the transition rates
among the macro-states. This generator is composed of blocks and the matrix
is like the one given in (1), with the blocks in (2).

In the expressions below, the matrix I denotes the identity matrix of
appropriate order.

B0,0 = T − (n − 1)λsI,

B0,1 =
[

T 0α + (n − 1)λsI
]

⊗ β,

B1,0 = I ⊗ S0,

A2 = I ⊗ S0β,

A
(i)
1 = [T ⊕ S] − (n − i − 1)λsI, i = 1, 2, . . . , n − 1 (2)

A
(i)
0 =

[

T 0α ⊗ I
]

+ (n − i − 1)λsI, i = 1, 2, . . . , n − 2

Bn−1,n = T 0 ⊗ I,

Bn,n−1 = S0α ⊗ β,

Bn,n = S.
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3 Stationary probability vector

We use π = (π0, π1, . . . , πn−1, πn) to denote the stationary-probability vector,
which satisfies the matricial equation πQ = 0, subject to the normalization
condition πe = 1.

To solve resulting system we use previous results ([Naoumov, 1997],
Proposition 18). It is obtained that the stationary vector can be recursively

obtained in terms of π0 and rate matrices as πj = π0

∏j−1
k=0 Rk, j = 1, . . . , n,

being

Rn−1 = −Bn−1,nB−1
n,n,

Rn−2 = −A
(n−2)
0 (A

(n−1)
1 + Rn−1Bn,n−1)

−1,

Rj−1 = −A
(j−1)
0

(

A
(j)
1 + RjA2

)−1

, j = n − 2, . . . , 2

R0 = −B0,1(A
(1)
1 + R1A2)

−1

The vector π0 is determined by the equation π0(B0,0 + R0B1,0) = 0 sub-

jected to the normalization condition π0

(

∑n

j=0

∏j−1
i=0 Ri

)

e = 1.

4 Performance measures

The performance measures will be given by means of the stationary prob-
ability vector and, consequently, from the matrices R. Below two of these
measures appear, the availability and several rates of occurrence of failures:
for the unit online and for the system.

The availability of the system is the probability that the system will be
operational, thus:

A =

n−1
∑

i=0

πie = π0

(

n−1
∑

i=0

i−1
∏

k=0

Rk

)

e = 1 − πne.

We now calculate the rate of occurrence of failures for the unit online,
whose expression results:

v1 = π0T
0 + π0

(

n−1
∑

i=1

i−1
∏

k=0

Rk

)

(T 0 ⊗ e).

The mean number of times that the system is down per unit time.is given
by

ν2 = πn−1(T
0 ⊗ e) = π0

(

n−2
∏

k=1

Rk

)

(T 0 ⊗ e).
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5 Distributions of the up and down periods

It is useful to know the distribution of the times during the system is opera-
tional or is being repaired in the long run. These are of special importance in
systems that require a high reliability. We will show that these random times
follow PH-distributions. In the references we have found different ways to
define an up period. One is the timespan between the point at which all the
units are initially operational (macro-state 0) and the point at which all the
units are not operational by first time (macro-state n). Another definition is
the timespan between the instant in which an unit completes its repair while
the others are non-operational (the system enters the macro-state n−1 from
n) and the instant in which for the first time the system is non-operational
(enters the macro-state n). For calculating the distribution function of this
time, we consider a modified Markov process from the original, with the same
operational macro-states and identifying the non-operational macro-states in
a new absorbent macro-state that will be denoted by n∗. The up period is the
time up to the absorption by the macro-state n∗, and thus the distribution
will be a PH-distribution. The generator Q∗ of this new Markov process is
derived from the expression (1) where the block Bn,n−1 is a null row vector,
Bn,n = 0 and Bn−1,n is replaced by the column vector Bn−1,ne.

The representation of the up period is (γu,Lu), matrix Lu being the one
calculated from Q∗ eliminating the row and the column corresponding to the
macro-state n∗. The initial conditions need to be chosen so as to reflect the
physical conditions of the system at time t = 0. If all units are operational
at this point, the initial vector can be chosen as (α, 0, . . . , 0). Choosing this
definition we focus on the initial warranty period of the system, that is,
the time to system failure given that initially all the units are operational.
However, if we consider the second definition of the up period given above,
the initial vector can be chosen as (0, . . . , 0, α ⊗ β). It is possible to express
the initial condition in terms of the stationary probability vector, then, the
initial vector considering the first definition above can be chosen as

γu =

[

π0

π0e
,0

]

.

The operational mean time is

MTTF = −γuL−1
u e.

The down period begins when the only operational unit fails (the rest are
in repair or waiting for repairing), and finishes at the point when the first
repair is completed. This period follows a PH(γd, S), where γd is determined
as follows. Let γd(l) 1 ≤ l ≤ k, be the stationary probability that the unit
under repairing occupies the phase l. The system initiates its down-period
in the infinitesimal interval (t, t + dt) with probability πn(T 0 ⊗ e)dt, then,
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n = 10

π0 0.0004 * *

πn 0.0463 0.0142 0.0115

n = 50

π0 * * *

πn 0.0470 0.0144 0.0117

n = 20

π0 * * *

πn 0.0468 0.0144 0.0117

n = 100

π0 * * *

πn 0.0471 0.0144 0.0117

Table 1. Stationary probabilities π0, πn for different values of n

γd(l) =

∑

j πn−1(j, l)T
0
j

πn−1(T 0 ⊗ e)
, 1 ≤ l ≤ k,

being πn−1(j, l) the probability that at any time n − 1 components of the
system are down with the unit online in phase j and the unit under repair in
phase l. The initial vector yields then

γd = (γd(l))1≤l≤k.

The mean time that the system remains down is given by

MTTD = −γdS
−1e.

6 Numerical application

In this section we apply the calculations performed above to a practical case,
preserving the notation of the previous ones. We consider the following rep-
resentations for the PH-distributions of the operational and repair times.

α = (1, 0, 0) β = (1, 0, 0)

T =





−0.0027 0.0027 0
0 −0.008 0.008
0 0 −0.02878



 , S =





−0.02 0.02 0
0.01 −0.08 0.07
0.005 0 −0.1



 .

Let us study the behavior of the system defined in Section 2 with these
numerical values for different number of units n. The stability of the measures
in terms of the number of units is calculated. The failure rate for the units
in standby will be λs = 0.03.

In Table 1 we present the values of π0 and πn for different values of
n, showing that for n close to 20 the probabilities remain stable when n

increases. The values of π0 are very close to 0 for n ≥ 20, and the ones
corresponding to πn tends to (0.0470,0.0144,0.0117) when n increases.

These values indicate that there are frequently non-operational units, and
the system is down with a probability close to 7.31% when there a few units.
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n A v1 v2 MTTF ρ L

10 0.928 0.002 0.001 828.193 0.999 8.659

20 0.927 0.002 0.001 842.439 1 18.534

30 0.927 0.002 0.001 851.241 1 28.402

50 0.927 0.002 0.001 862.998 1 48.128

Table 2. Performance measures for different number of units

In Table 2 we present the performance measures that have been intro-
duced in previous sections. We use ρ to denote the utilization factor, that is,
the proportion of time that the repairman is busy, and L denotes the mean
number of non-operational units. MTTF is the mean time of the up period.

The availability decreases slightly when the number of units increases, and
stabilizes at around the 92.7%. The different rate of occurrence of failures
change slowly with n. The mean number of units failing per unit time in-
creases softly; for example, for a system with 30 units, the mean time between
two consecutive unit failures is about 75.757 t.u. The utilization factor of the
repairman is very near to 1, so that the repair system is almost saturated,
and the mean number of units in the repair channel consequently increases.
The mean number of total failure per unit time of the system is 0.001.

Final note. Taking λs = 0 in our model we have an 1-out-of-n-system,
where one unit is online and the others in cold standby. Thus, the stochastic
process that governs the system is a quasi-birth-and-death process (QBD
process), that has been studied in [Pérez-Ocón and Montoro-Cazorla, 2004a].
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