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Abstract. In this paper, we deal with a continuous-time software reliability model
designed by Littlewood. This model may be thought of as a partially observed
Markov process. The EM-algorithm is a standard way to estimate the parameters of
processes with missing data. The E-step requires the computation of basic statistics
related to observed/hidden processes. In this paper, we provide finite-dimensional
non-linear filters for these statistics using the innovations method. This allows to
plan the use of the filter-based EM-algorithm developed by Elliott.
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1 Introduction

A major issue in software reliability modeling is the calibration of the models
from data. This is well documented in the so-called “black-box approach”.
We refer to [Ledoux, 2003] and references therein for details. To the best of
our knowledge, no statistical procedure has been proposed in the architecture-
based approach for assessing the reliability of a software. A standard model
in this context was provided by Littlewood [Littlewood, 1975]. It has inspired
most other works [Goseva-Popstojanova and Trivedi, 2001]. Littlewood pro-
posed a Markov-type reliability model for modular softwares. For a software
with a finite number of modules:

– the structure of the software is represented by a finite continuous time
Markov chain X = (Xt)t≥0 where Xt is the active module at time t.
The generator of X is denoted by Q and its state space is assumed to be
U := {ei, i = 1, . . . , n}.

– When module ei is active, the failure times are part of a homogeneous
Poisson Process with intensity µ(i).

– When control switches from module ei to module ej , a failure may happen
with probability µ(i, j).

– When a failure appears, the time to recover a safe state is neglected. A
failure does not affect the execution dynamics of the software.

– All failure processes are assumed to be independent, given a sequence of
activated modules.
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Let us denote the number of observed failures over [0, t] by Nt. It can be
seen that (Nt, Xt)t≥0 is a Markov process with state space N×U . It has the
following generator

A =




D0 0 0 · · ·

D1 D0
. . .

. . .
...

. . .
. . .

. . .


 (1)

when the states are listed in lexicographic order and the matrices D0 and D1

are defined by

if j 6= i : D0(j, i) := Q(j, i)(1 − µ(j, i)) D1(j, i) := Q(j, i)µ(j, i),

D0(i, i) := −
∑

j 6=i

Q(j, i) − µ(i) D1(i, i) = µ(i).

The nonnegative number D0(j, i) (j 6= i) represents the rate at which X

jumps from state ei to ej with no failure event. The entry D1(j, i) is the rate
at which X jumps from state ei to state ej with the occurrence of one failure.
Note that Q = D0 + D1. The distribution function of the counting variable
Nt may be numerically evaluated using the uniformization technique. But
this requires the knowledge of the non-negative parameter vector

θ = {Dk(j, i), k = 0, 1 i, j = 1, . . . , n}.

In general, we can obtain a priori estimates for θ using procedures reported in
[Goseva-Popstojanova and Trivedi, 2001]. They are based on data collected
at earlier phases of the software life cycle (validation phases, integration
tests,. . . ). Sometimes, these estimates might appear to be rough estimates
when the software is in operation. The only available data is the observation
of failure events. In that perspective, the process (N, X) should be thought
of as a partially observed Markov process or a hidden Markov process. The
observed process is the failure point process (Nt)t≥0 and the state or hidden
process is the finite Markov process (Xt)t≥0. The EM-algorithm is a standard
way to estimate the parameters of hidden Markov processes. Elliott proposed
a filter-based EM-algorithm in [Elliott et al., 1995]. That is, the standard
forward-backward form of the E-step of the algorithm is replaced by a single-
pass procedure that involves finite-dimensional filters for various statistics
related to the observed/hidden processes. The aim of this paper is to provide
such finite-dimensional filters for Littlewood’s model.

We point out that we deal with a failure point process that is a Markovian
Arrival Process (MAP) as defined by Neuts [Neuts, 1989]. The Littlewood
model has the (doubly stochastic) Poisson process (driven) modulated by a
Markov process as a special instance (setting parameters µ(·, ·) to 0). Statis-
tical estimation for the MAP has been recently developed in the continuous-
time context (see [Asmussen, 2000, Klemmm et al., 2003, and references
therein]. All these works use the forward-backward procedure. The numeri-
cal experiments reported in their studies show that EM-algorithm works well
in general.
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2 Finite-dimensional filters

Main notation and convention

– Vectors are column vectors. Row vectors are denoted by means of the
transpose operator (.)T.

– 1k is a k-dimensional vector with each entry equals to one.
– We denote the left limit of function f at t by ft−.

For any function t 7→ ft, ∆ft := ft − ft− for t > 0 is the jump of the
function at time t. We set ∆f0 := f0.

– The state space of X is U := {ei, i = 1, . . . , n}, where ei is the ith vector
of the canonical basis of Rn. With this convention,

1{Xt=ei} = 〈Xt, ei〉, 1T

nXt = 1

where 〈·, ·, 〉 is the usual scalar product in Rn.
– All processes are assumed to be defined on the same probability space

(Ω,F , P). The internal filtrations of processes N and (N, X) are denoted
by FN = (FN

t )t and F = (Ft)t respectively. These filtrations are assumed
to be complete.

– For any integrable adapted random process (Zt)t≥0, the conditional ex-

pectation E[Zt | FN
t ] is denoted by Ẑt.

2.1 Basic material on the observed/hidden processes

We report here a semi-martingale representation of the basic statistics of
the Littlewood’s model for which filters will be derived. Due to the special
structure of generator A of (N, X) (see (1)), N and the following counting
processes are easily interpreted to be counters of specific transitions in (N, X)

N
X,ji
t :=

∑

0<s≤t

〈Xs−, ei〉〈Xs, ej〉 =

∫ t

0

〈Xs−, ei〉〈ej , dXs〉

L1,ji
t :=

∑

0<s≤t

〈Xs−, ei〉〈Xs, ej〉∆Ns =

∫ t

0

〈Xs−, ei〉〈Xs, ej〉dNs

j 6= i L0,ji :=
∑

0<s≤t

〈Xs−, ei〉〈Xs, ej〉(1 − ∆Ns) = N
X,ji
t − L1,ji

t

and Nt(x, y) is the number of transitions of (N, X) from state x to state y at
time t. It is well known that [Bremaud, 1981]

Mt(y, x) := Nt(y, x) −

∫ t

0

A(y, x) 1{(Ns−,Xs−)=x}ds

is a F-martingale. In other words, the F-semi-martingale (or Doob-Meyer

here) decomposition of N(y, x) is Nt(y, x) =
∫ t

0 1{(Ns−,Xs−)=x}A(y, x)ds +
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Mt(y, x). Then, it is easily seen that the F-semi-martingale decomposition
of the counting processes above are

Nt =

∫ t

0

λsds + Mt with λs := 1T

nD1Xs− (2)

N
X,ji
t :=

∫ t

0

Q(j, i)〈Xs−, ei〉ds + M
NX(j,i)
t

Lk,ji
t :=

∫ t

0

Dk(j, i)〈Xs−, ei〉ds + M
Lk,ji

t k = 0, 1 (3)

where M,MNX(j,i),MLk,ji are F-martingales.
The last statistics that we need, is the sojourn time of X in any state ei

in the interval [0, t]

O
(i)
t :=

∫ t

0

〈Xs−, ei〉ds

The basic semi-martingale decomposition of the Markov process X is [Bre-
maud, 1981]

Xt =

∫ t

0

QXs−ds + MX
t . (4)

We recognize in (4) and (2) a standard representation of a continuous-time
hidden Markov process, with X as the state process and N the observed
process. The observation and state “noises” are correlated here.

2.2 The EM-algorithm

We briefly explain the EM-algorithm for our continuous-time hidden Markov
model. We refer to [Klemmm et al., 2003] for full details. For a fixed param-
eter vector θ, we denote the underlying probability measure and associated
expectation respectively by Pθ and Eθ. X0 or its probability distribution x0

is assumed to be known. The observed data are supposed to be the inter-
failure durations {t1, . . . , tK} where tK = t. The likelihood function for the
complete data (N, X) up to time t under Pθ is

Lt(θ; N, X) :=

n∏

i,j=1,

D1(j, i)
L

1,ji
t

n∏

i,j=1,j 6=i

D0(j, i)
L0,ji

t

n∏

i=1

eD0(i,i)O
(i)
t

n∏

i=1

x0(i)
〈X0,ei〉.

The formulas for estimating θ from the observations Ns, s ≤ t are obtained
using the following iterative procedure:

i ) Initialization : Choose θ0

ii ) E-step. Set θ := θl. Compute the so-called pseudo-log-likelihood Q(· | θ)
defined by

Q(θ∗ | θ) := Eθ

[
log Lt(θ

∗; N, X) | F
N
t

]
(5)

where θ∗ := {D∗
k(j, i), i, j = 1, . . . , n; k = 0, 1}.
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iii ) M-step. Determine θl+1 maximizing the function (5).
iv ) Return in 2 until a stopping criterion is satisfied.

For the M-step, it is easily seen that

i, j = 1, . . . , n D∗
1(j, i) =

L̂1,ji
t

Ô(i)
t

, D∗
0(j, i) =

L̂0,ji
t

Ô(i)
t

, i 6= j. (6)

An appealing property of the EM-algorithm is that the sequence of estimates
{θl, l ≥ 0} gives a nondecreasing values of the likelihood function with equal-
ity iff θl+1 = θl (under mild conditions). Note that the zero entries of Dks
are preserved by the procedure above.

As a result of the procedure above, we have to compute the estimates
in (6). The standard way is to use the Baum-Welch implementation of the
EM-algorithm (also referred to as the “forward-backward” technique). This is
what is done in the previously mentioned works [Asmussen, 2000, Klemmm et
al., 2003]. Using the filter-based approach pioneering by Elliott [Elliott et al.,
1995], the estimates in (6) are computed from the filters given in Theorem 1.
The basic difference with the standard Baum-Welch method is that only one
pass through the data set is needed for the filter-based method.

2.3 The results

We use a trick proposed by Elliott. We compute the following filters

N̂X,jiXt, Ô(i)Xt and L̂1,jiXt

which turn to be finite-dimensional. Then, we have

N̂X,ji
t = 1T

nN̂X,jiXt, Ô(i)
t = 1T

nÔ
(i)Xt, and L̂1,ji

t = 1T

nL̂
1,jiXt.

A filter equation for L0,ji
t Xt (j 6= i) can be derived as that of Theorem 1 or

using the fact that L̂0,jiXt = N̂X,jiXt − L̂1,jiXt.

Theorem 1 Let λ̂t := 1T

nD1X̂t−. The fundamental FN -martingale (Nt −∫ t

0 λ̂sds)t≥0 is denoted by (M̂N
t )t≥0.

i ) Estimator for the state. We have for any t ≥ 0

X̂t = X̂0 +

∫ t

0

QX̂s−ds +

∫ t

0

D1X̂s− − X̂s−λ̂s

λ̂s

dM̂N
s . (7)

ii ) Estimator for the number of jumps of X from ei to ej . We have for any
t ≥ 0

N̂X,jiXt =

∫ t

0

QN̂X,jiXs−ds +

∫ t

0

Q(j, i)〈X̂s−, ei〉ds ej

+

∫ t

0

D1N̂X,jiXs− − N̂X,jiXs−λ̂s

λ̂s

dM̂N
s .

(8)
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iii ) Estimator for the sojourn time to ei. We have for any t ≥ 0

Ô(i)Xt =

∫ t

0

QÔ(i)Xs−ds +

∫ t

0

〈X̂s−, ei〉ds ei

+

∫ t

0

D1Ô(i)Xs− − Ô(i)Xs−λ̂s

λ̂s

dM̂N
s .

(9)

iv ) Estimator for the number of joint transitions. We have for t ≥ 0

L̂1,jiXt =

∫ t

0

QL̂1,jiXs−ds +

∫ t

0

D1(j, i)〈X̂s−, ei〉ds ej

+

∫ t

0

D1(j, i)〈X̂s−, ei〉 ej + D1L̂1,jiXs− − L̂1,jiXs−λ̂s

λ̂s

dM̂N
s .

(10)

Remark 1 The filters for the statistics of an MMPP may be obtained from
the previous theorem. We have D1 = Diag(µ(i)).

Proof. A proof of (7) may be found in [Gravereaux and Ledoux, 2004]. In

the sequel, M (resp. M̂) will denote a generic F (resp. FN)-martingale. The
proof of (9) is as follows. An integration by parts gives

O
(i)
t Xt =

∫ t

0

O
(i)
s−dXs +

∫ t

0

Xs−dO(i)
s + [O(i), X ]t︸ ︷︷ ︸

0

=

∫ t

0

QO(i)
s Xs−ds +

∫ t

0

〈Xs−, ei〉eids + M from (4). (11)

The FN -optional projection of the equation above, is

Ô(i)Xt =

∫ t

0

QÔ(i)Xs−ds +

∫ t

0

〈X̂s−, ei〉ei + M̂. (12)

The integral representation of FN -martingales says that M̂ in the right hand
side member above, has the form [Bremaud, 1981]

∫ t

0

G(i)
s dM̂N

s .

Thus, the proof will be complete if we prove that

G(i)
s =

D1Ô(i)Xs− − Ô(i)Xs−λ̂s

λ̂s

. (13)
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The product NtÔ(i)Xt has the form from an integration by parts

NtÔ(i)Xt =

∫ t

0

Ns−dÔ(i)Xs +

∫ t

0

Ô(i)Xs−dNs + [N, Ô(i)X]t

=

∫ t

0

Ns−[QÔ(i)Xs + 〈X̂s−, ei〉 ei]ds + M̂ from (12)

+

∫ t

0

Ô(i)Xs−λ̂sds + M̂

+

∫ t

0

G(i)
s λ̂sds + M̂ (14)

Note that O(i) has continuous paths so that ∆O
(i)
s = 0. Next, the product

Nt(O
(i)
t Xt) is with an integration by parts

NtO
(i)
t Xt =

∫ t

0

Ns−d(O(i)X)s +

∫ t

0

O
(i)
s−XsdNs

=

∫ t

0

Ns−[QO
(i)
s−Xs− + 〈X̂s−, ei〉 ei]ds +

∫ t

0

O
(i)
s−XsdNs from (11).

Let us compute the last term in the equality above:
∫ t

0

O
(i)
s−XsdNs =

∑

0<s≤t

O
(i)
s−Xs∆Ns =

∑

j

ej

∑

k

∫ t

0

O
(i)
s−dL1,jk

s

=

∫ t

0

O
(i)
s−

∑

j

ej

∑

k

D1(j, k)〈Xs−, ek〉ds + M from (3)

=

∫ t

0

O
(i)
s−D1Xs−ds + M.

Then, we deduce from the last equality that

NtO
(i)
t Xt =

∫ t

0

Ns−[QO
(i)
s−Xs− + 〈Xs−, ei〉 ei]ds +

∫ t

0

O
(i)
s−D1Xs−ds + M.

The FN -optional projection of the previous formula leads to a second decom-

position of the special semi-martingale NtÔ(i)Xt

NtÔ(i)Xt =

∫ t

0

Ns−[QÔ(i)Xs− + 〈X̂s−, ei〉 ei]ds +

∫ t

0

D1Ô(i)Xs−ds + M̂.

(15)
We know that the bounded variations part of the decomposition of a special
semi-martingale is unique. Then, we can identify the corresponding terms
in the decompositions (14) and (15), that is the Lebesgue integrals. The
expression (13) of the gain G(i) follows easily.

Formulas (10) and (8) are shown in the same way. Their proofs are not
reported here for saving space.
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3 Conclusion

The Littlewood’s software reliability model may be thought of as a partially
observed Markov process. The contribution of this paper is to provide finite-
dimensional non-linear filters for various statistics associated with this model.
These filters are the first step in view of implementing the filter-based form
of the EM-algorithm proposed by Elliott [Elliott et al., 1995]. We mention
that basic extensions may be obtained following the guidelines of this paper.
We can derive filters for the general class of MAP’s. The case of occurrences
of failures in clusters can also be included in the discussion. We just have to
consider N as a multivariate point process of failures. From the numerical
point of view, a second step in implementing the filter-based approach would
be to find the so-called robust versions of the non-linear filtering equations
obtained here. Then, robust numerical algorithms may be expected. We refer
to [James et al., 1996] for a detailed discussion of such a time discretization
approach. In this perspective, we mention that it should be desirable to
obtain Zakäı form for our filters. Such a form can be derived from our results.
The details will be reported elsewhere.
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