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Abstract. Let X1, X2... be a sequence of i.i.d random variables representing suc-
cessive inputs to the moving average process,

Yn =
1

K

K−1
X

i=0

Xn−i.

The Yn is off target by Xn if it exceeds a threshold. By introducing a two states
Markov chain, we define “on target significant level” and establish a technique for
evaluating the threshold corresponding to a prescribed on target significant level.
It is proved that in such circumstances for exponential and normal inputs, the
threshold is a linear function in the mean µX1 , where slops and intercepts are also
specified. These relationships can be easily applied for estimating the thresholds.
Keywords: Moving Average, Threshold, On target significant level..

1 Introduction

Let X1, X2, · · · be a sequence of independent and identically distributed ran-
dom variables, and let Yn be the corresponding left sided moving average,
as defined in the abstract. In practice, the input sequence {Xn} may rep-
resent successive loads, excess loads, rain falls, water supply in successive
periods, service time to the nth arrival, etc; and the moving averages are pro-
cesses indicating accumulations of certain number of immediate prior inputs.
Thus by taking into account K − 1 immediate prior inputs to the nth input,
the cumulative value corresponding to the nth input is

∑K−1
i=0 Xn−i, n =

K, K + 1, K + 2, · · · , and Yn = 1
K

∑K−1
i=0 Xn−i, n = K, K + 1, K + 2, · · ·

is a sequence of moving averages. The process Yn is off or on target at the
commencement of the arrival of the (n + 1)th input if Yn > L or Yn ≤ L
respectively. The threshold L is non-random and is considered as a parame-
ter. Our aim in this article is to specify, or estimate, L so that the moving
averages remains (1 − a)%, 0 < a < 1, of times on target.

We prove that the status, off or on target, is indeed a two state Markov
chain, and derive formulas for the transition probabilities in terms of the
distribution of the inputs. This allows to define a prescribed “on target
significant level” for the moving averages, and then proceed to introduce a
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method to achieve the aim. We have examined our method for exponential
or normal inputs. Interestingly in these cases L turns out to be linear in the
mean of the distribution of the inputs, µX1 . Point estimation and interval
estimation can be easily established using the derived linear relationships.

The methodology and results presented in this article, we believe, can be
applied in Reliability, Control Theory, System Assessments, and Hydrology.
Moving averages are classical tools in time series, stochastic processes and
scan statistics; and are basis for many linear and nonlinear models. Moving
averages, in the content presented here, had not been treated in other works,
to the best of the authors’ knowledge. The threshold of moving averages, con-
sidered in this article, is different from the threshold moving average which
is a nonlinear model, [G. and Gooijer, 1998]. Two-state Markov chains, in
contents different from the one presented in this article, have been employed
by different authors as underlying probability models of various hydrology
events, [Vogel, 1987]. The works [Banifacio and Salas, 1999] and references
therein are rich in providing applications of these types of probability tech-
niques to hydrology data.

2 A Markov Chain

Let X1, X2, · · · , and Yn be as defined in the Introduction, Define

Vn =

{

0, Yn > L
1, Yn ≤ L

, n = K, K + 1, · · ·

We recall that the situation Vn = 0 indicates that Yn is off target by Xn,
while Vn = 1 indicates that it is not. We prove below that {Vn} is indeed a
Markov chain and provide its transition probabilities.

Lemma 1. The process Vn, n = K, K + 1, · · · , is a Markov chain with
transition probabilities.

P00 =

∫ +∞

−∞
[1 − F (KL − t)]2fTK−1(t)dt

1 − FTK
(KL)

, K ≥ 1, (2.1)

P11 =

∫ +∞

−∞
[F (KL − t)]2fTK−1(t)dt

FTK
(KL)

, K ≥ 1, (2.2)

where F is the distribution of X1, and TK = X1 + X2 + ... + XK , T0 = 0.

The Lemma 1 can be deduced through classical techniques in probabil-
ity, so its proof is omitted here. By using the transition probabilities, the
stationary distribution of the Markov Chain {Vn} is easily given by

π0 =
P10

P10 + P01
, π1 =

P01

P10 + P01
, (2.3)



1212 Soltani et al.

[Karlin and Taylor, 1998]. The return period of the state 0 and state 1 are
respectively m00 = 1

π0
, m11 = 1

π1
, which specify the duration of successive

visits to these states. Other duration are measured by m01 = 1
1−P00

, m10 =
1

1−P11
.

Now we are in a position to define “on target significant level”.

Definition 1.1. We call the (1− a)% the “on target significant level” of the
moving average process {Yn}, where a = π0 is the stationary probability of
the state 0 of the Markov chain {Vn}.

3 Exponential And Normal Inputs

In this section we establish a relationship between the threshold L and the
mean of the distribution of inputs, whenever the distribution is exponential
or normal.

Let us assume loads X1, X2, · · · are i.i.d. exponentially distributed with
parameter λ, E(X1) = 1/λ. The following theorem specifies the appropriate
threshold for the moving average to possess the on target (1−a)% significant
level.

Theorem 3.1. If inputs X1, X2, · · · follow exponential distribution with
parameter λ, then the least value L for the threshold to ensure (1 − a)% on
target significant level for the moving average Yn is given by

L =
θ(a, K)

K
(
1

λ
), (3.1).

where θ(a, K) is the positive solution to the equation

π1(θ, K) = 1 − a, (3.2)

and π1(θ, K) is given by (2.3) with

P00 = (K − 1)
N(θ, K − 2)

(K − 1)! − G(θ, K − 1)
, θ = λKL, (3.3)

and

P11 = (K − 1)
G(θ, K − 2) + N(θ, K − 2) − 2

K−1e−θθK−1

G(θ, K − 1)
, θ = λKL,

(3.4)
where

G(θ, K) =

∫ θ

0

xKe−xdx , N(θ, K) =

∫ θ

0

(θ − x)Ke−(θ+x)dx.

Proof. The statement of the theorem indeed indicates the outline of the
proof. By some algebraic simplification, the (2.1) and (2.2) will reduce to
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(3.3) and (3.4) respectively. By examining later relations, we notice that K
and θ = λKL are parameters that are involved in transition probabilities.
This gives L = θ

K
(1/λ). But θ can be derived from (3.2) when the on target

significant level is prescribed. Proof is complete.
Remark 3.1. For K = 7, we solved (3.2) for the θ(a, K) with different

values of 1 − a, using Mathematica 3.0, [Wolfram, 1991]. The solutions are
given in Table 1. The transition and stationary probabilities are also plotted
in terms of θ for K = 7, Figure 1. The threshold L in (3.1) is also plotted
in terms of the mean 1/λ, Figure 2. We notice from Fig. 2 that π1(θ, 7) is
strictly increasing, providing a unique solution for θ(a, 7).

1-a 0.9 0.8 0.7 0.6 0.5

θ(a, 7) 8.197 5.651 3.507 1.625 0

Table 1. Exponential Distribution; Significant Levels and Corresponding θ(a, 7) in
(3.2).

Normal Distribution. Suppose the inputs X1, X2... are i.i.d normally
distributed with mean µ and standard deviation σ. Interestingly, in this
case also L is linear in µ. Details are given below.

Theorem 3.2. If inputs X1, X2, · · · follow normal distribution with mean
µ and standard deviation σ, then the least value L for the threshold to ensure
(1 − a)% on target significant level for the moving average Yn is given by

L = µ + η(a, K)σ, (3.5)

where η(a, K) is the solution to the equation

π1(η, K) = 1 − a, (3.6)

and π1(η, K) is given by (2.3) with

P00 =
C(η, K)

1 − Φ(
√

Kη)
, η =

L − µ

σ
, (3.7)

and

P11 =
B(η, K)

Φ(
√

Kη)
, η =

L − µ

σ
(3.8)

where

C(η, K) =
1

√

2π(K − 1)

∫ +∞

−∞

[1 − Φ(x)]
2

e−
1

2(K−1)
(x−Kη)2dx,
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Fig. 1. Top Left: P00(θ, 7) ; Top Right: P11(θ, 7); Bottom: π0(θ, 7).

and

B(η, K) =
1

√

2π(K − 1)

∫ +∞

−∞

[Φ(x)]
2

e−
1

2(K−1)
(x−Kη)2dx,

Proof. In this case we note that the transition probabilities in (3.7) and
(3.8) are expressed in terms of the parameter η = L−µ

σ
. So for given a, the
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Fig. 2. Plots of L in terms of 1/λ for a = 0.9, 0.8, 0.7, 0.6, 0.5.

η(a, K) in (3.5) is the solution to (3.6). The proof is complete.

Remark 3.2. For K = 4, the (3.6) is solved for η(a, K) with different
values for 1 − a, using Mathematica. The version of Mathematica that we
used did not solve the (3.6) directly, so we had to bypass this barrier by
approximating the integrals involved in the equation by corresponding sum-
mations. The solutions are given in Table 2. The transition and stationary
probabilities are also plotted in terms of η for K = 4, Figure 3. The threshold
L in (3.1) is also plotted in terms of the mean µ for σ = 1, Figure 4.
Remark 3.3. The (3.1) and (3.5) can also be used estimation purposes
when L is considered as an unknown parameter. It easily follows that for
exponential and normal inputs, respectively

L̂ =
θ(a, K)

K
x,

L̂ = x + η(a, K)s.

Remark 3.4. Although the exponential and normal distributions were
treated explicitly, the method, nevertheless, can be carried out for other
distributions in order to identify or estimate the threshold parameter.

1-a 0.9 0.8 0.7 0.6 0.5

η(a) 0.65 0.47 0.28 0.14 0

Table 2. Normal Distribution; Significant levels and corresponding η(a) in (3.6)
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Fig. 3. Top Left: P00(η, 4) ; Top Right: P00(η, 4); Bottom Left: π1(η, 4)
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Fig. 4. Plots of L(a, 4) in terms of µ for σ = 1 and a = 0.9, 0.8, 0.7, 0.6, 0.5.
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