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Abstract. A common way of allowing heterogeneity between individuals in mod-
els for lifetime data is to introduce an unobservable individual random effect Z. In
a proportional hazards framework, the individual’s hazard becomes zhb(t) where
hb(t) is the baseline hazard. The random variable Z is often assumed to follow
the Gamma or Inverse Gaussian distribution. We develop here diagnostic tests for
these assumptions. One simple graphical diagnostic is based on the form of the
unconditional survival function when hb(t) is assumed to be Weibull. Another plot
uses a closure property of a family of frailty distributions, which implies that the
frailty among survivors at time t has the same form as the original distribution of Z,
with the same shape parameter but different scale parameter. In this method, we
estimate the shape parameter at different times t and examine graphically whether
it is constant. We give simulation results and examples to illustrate these meth-
ods.
Keywords: Lifetime data, frailty, proportional hazards, Burr distribution, Gener-
alized Inverse Gaussian distribution.

1 Introduction

When modelling data obtained from time-to-event studies, it is often found
that there is heterogeneity between individuals, over and above what can be
accounted for by any available covariates. One common way of allowing for
this heterogeneity is to introduce an unobservable individual random effect
Z, the so-called frailty. This is usually assumed to operate in a proportional
hazards framework, so that it acts multiplicatively on the baseline hazard
function hb which is common to all individuals. Thus the hazard function for
an individual with frailty Z = z is given by

h(t|z) = zhb(t)

If there are also measured covariates, the model is usually extended to

h(t|z; X) = zeβ
′
x(t)hb(t)

where x(.) is a q-dimensional vector of possibly time-dependent covariates.
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Introducing heterogeneity in lifetime data by means of an unobserved
quantity in this way was initiated by [Clayton, 1978], [Vaupel et al., 1979]
and [Hougaard, 1984]. The distribution of the random variable Z is often
assumed to be Gamma [Vaupel et al., 1979] or Inverse Gaussian [Hougaard,
1984]. As with any part of the process of statistical modelling, it is desirable
to check that the assumed distribution is supported by the data. The purpose
of the present paper is to develop diagnostic plots for the frailty distribution,
with the emphasis on these two common choices, the Gamma and Inverse
Gaussian. We will be assuming that the baseline hazard function hb has been
specified correctly and that the multiplicative proportional hazards frailty
model is the proper one to describe the data.

2 Diagnostic plots for mixtures

From the proportional hazards assumption, it follows that the conditional
survivor function for an individual with frailty z is

S(t|z) = [Sb(t)]
z

where Sb is the baseline survivor function. In particular, if the baseline model
is taken to be Weibull (η, β), then the survivor function conditional on frailty
z is

S(t|z) = exp(−zs)

where s = (t/η)
β
. If Z has distribution function G on (0,∞), then the

unconditional survivor function is given by
∫ ∞

0

exp(−zs)dG(z)

If G is taken to be Gamma with shape and scale parameters both equal to ν
(so that the mean is one), then

S(t) =
(

1 +
s

ν

)−ν

(1)

(the Burr distribution), while taking G to be Inverse Gaussian with scale 1
and shape λ yields the survivor function

S(t) = exp

(

λ

(

1 −

√

2s

λ
+ 1

))

(2)

(In both cases, a constraint has been applied to the parameters of G to make
the model identifiable. Other choices of constraint are possible but make no
difference in principle.)

We now look for appropriate diagnostic plots to enable us to check that
the assumption of one of these distributions is in fact correct. The idea is to
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plot some function of the non-parametric Kaplan-Meier estimate of survival,
Ŝ(t), against some function of t, to obtain the characteristic shape associated
with the distributions (1) and (2).

Taking logarithms of (1), and supposing that s/ν is large enough so that
log(1 + s/ν) ≈ log(s/ν), we see that −logŜ(t) against logt should give a
straight line.

[Wolstenholme, 1999] suggests this plot for the Pareto distribution. This is
the special case of the Burr distribution when the baseline hazard is exponen-
tial, which is a special case of the Weibull (β = 1). However, we observe that
the above approximation is poor for the early failures. These give the plot a
characteristic horizontal section, whose length depends on ν, disappearing as
ν becomes small (high degree of heterogeneity) (Figure 1). When the frailty
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Fig. 1. Diagnostic plot for Burr distribution for various values of the parameter ν.
1000 simulations of samples of size 1000, baseline Weibull parameters 1000 (scale)
and 2 (shape). Type I censoring at t=3000.

distribution is the Inverse Gaussian, taking logarithms of (2) suggests the
plot of log(−logŜ(t)) against logt if λ is large. Under these circumstances,
there is only a small degree of heterogeneity and the distribution will not be
very different from the baseline Weibull distribution. This is the standard
diagnostic plot used to check for the Weibull distribution. It gives a straight
line with slope equal to the shape parameter β. On the other hand, suppose
that λ is large. It is easy to show that in this case the Weibull(η, β) - Inverse
Gaussian(1,λ) mixture tends to the Weibull with scale parameter η/(2λ)1/β

and shape β/2. Thus the same plot gives a straight line with slope β/2. For
intermediate values of λ, the plot should be curved with slope falling from β
to β/2 as time increases. Examples are shown in Figure 2.

3 Closure property of the frailty distributions

To develop another kind of diagnostic plot, we start with a closure property
of Gamma frailty in the proportional hazards model ([Vaupel et al., 1979]).
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Fig. 2. Diagnostic plot for Weibull-Inverse Gaussian mixture for various values of
the parameter λ. Details of simulations as in Figure 1.

Given that the frailty distribution among all individuals is Gamma with scale
parameter κ and shape parameter λ, then the frailty distribution among
the population of survivors at time t is again Gamma with the same shape
parameter λ but different scale parameter given by κ + Hb(t), where Hb(t)
is the cumulative baseline hazard function. This property can be generalized
to a whole family of distributions.

3.1 Generalization of the Gamma frailty property

The Gamma frailty property given by [Vaupel et al., 1979] can be generalized
first to the case of available covariates. More specifically, given that the frailty
distribution is Gamma(κ, λ), then the frailty distribution among survivors at
time t, conditional on the value of the covariates, is Gamma (κ + Hx

b (t), λ),
where Hx

b (t) is given by

Hx

b (t) =

∫ t

0

e β
′
x(u)hb(u)du.

The closure property is not a characterization of the Gamma distribution
only. It is quite easy to show that a similar property holds also for the
Inverse Gaussian and the Generalized Inverse Gaussian (GIG). Furthermore,
a similar property holds for a whole class of distributions that belong to the
exponential family [Hougaard, 1984]. Let frailty Z be a random variable with
distribution F (α) on (0,∞), where α is the parameter vector, with p.d.f. of
the form

fz(z) =
e−[z,g(z)][η1(α),η2(α)]

′

Φ(α)
ξ(z)

which is an exponential family distribution with canonical statistics z and
g(z) [Shao, 1998]. For this frailty distribution the following theorem holds,
which extends Hougaard’s result by including covariates.
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Theorem 1 Given the frailty distribution F (α) with p.d.f. as above, then

under the proportional hazards frailty model the frailty distribution among

survivors at time t is again F (.). The value of η1(α), the element of the

parameter vector corresponding to z, changes, but the components of η2(α)
do not. More specifically, the p.d.f. of frailty among survivors at time t is

given by

fZ|T >t
(z) =

e−[z,g(z)][η∗
1
(α),η2(α)]

′

Φ∗(α)
ξ(z)

where η∗
1(α) = η1(α) + Hx

b (t) and Φ∗(α) = Φ(α)ST (t).

The GIG distribution (and hence the Gamma and Inverse Gaussian distribu-
tions which it includes) belongs to the above class of the exponential family.
Unfortunately, some other distributions, like the lognormal, which are also
widely used as frailty distributions, do not belong to this class because they
do not have z as a canonical statistic. This obstacle can be overcome by con-
sidering a generalized distribution, adding one more parameter [Hougaard,
1986] which will be zero initially. So, the Theorem can be applied to all
distributions F (α) with p.d.f given by

fz(z) =
e−T (z)[η(α)]

′

Φ(α)
ξ(z)

where T (z) does not contain z as a component, since the above distribution
can be seen as a special case of GF (α, β) with p.d.f. given by

fz(z) =
e−[z,T (z)][β,η(α)]

′

ΦG(α, β)
ξ(z)

for β = 0. ΦG(α, β) is the integral over the range of z, R(z), of the numer-
ator of the previous relationship. Applying the Theorem to the distribution
GF (α, 0) shows that the frailty distribution among the survivors at time t
will be again GF but with parameter vector given by (α, Hx

b (t)).

3.2 Plots

Given that the frailty distribution has been chosen correctly, then our above
Theorem shows that the vector η2(α) of the initial parameters does not
change when we restrict our attention to the frailty distribution among those
units that have survived until time t. Let η̂2i(α)|T>t denote component i of
the maximum likelihood estimate of this vector among the survivors at time
t. If our assumption of the frailty distribution is correct, then η̂2i(α)|T>t

for any time t is an asymptotically unbiased estimator of the same quantity
η2i(α). Therefore, a plot of η̂2i(α)|T>t against time should give a straight
line parallel to the time axis.
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For the Gamma(κ, λ) and Inverse Gaussian(κ, λ) distributions of frailty

this plot reduces to λ̂|T>t versus t since η2(κ, λ) = λ. For the GIG(λ, δ, γ), the

proposed plots are of λ̂|T>t and δ̂|T>t against t, since η2(λ, δ, γ) = (λ− 1, δ2)
for this distribution.

In all cases, the maximum likelihood estimates of the model’s parameters
that are required for the plots are obtained by maximising the logarithm of
the usual likelihood function for lifetime data (ti : i = 1, 2...n)

L =
n
∏

i=1

{

h(ti)
δiS(ti)

}

where δi is the censoring indicator which takes the value 1 if ti is an observed
lifetime and zero if it represents a right censored observation. The expressions
for S(t) are given above in (1) and (2) for the Gamma and Inverse Gaussian
frailty distributions, respectively, and the hazard function h(t) can be ob-
tained as minus the derivative of logS. We first carry out this estimation
using all the data. Then we select a sequence of convenient time points τj

(j = 1, 2...k) and repeat the estimation k times, using in the ith estimation
only those data points ti satisfying ti ≥ τj .

3.3 Simulations

To illustrate the method, we simulated a set of 1000 uncensored data points
from the Burr distribution (Weibull-Gamma mixture) and produced the
above plot based on repeated estimates of ν. Then we fitted the incorrect
Weibull-Inverse Gaussian mixture to the same data and produced the corre-
sponding plot (Figure 3). Next we repeated the exercise with the roles of the
two distributions reversed. Thus we generated a set of data from the Weibull-
Inverse Gaussian mixture and produced the plots for both the correct model
and for the incorrect Burr distribution (Figure 4). In both cases, the plots
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Fig. 3. Plot defined in Section 3.2, fitting (left) correct Burr distribution, (right)
incorrect Weibull-Inverse Gaussian mixture to data generated from Burr (ν = 1).
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Fig. 4. Plot defined in Section 3.2, fitting (left) incorrect Burr distribution, (right)
correct Weibull-Inverse Gaussian mixture to data generated from Weibull-Inverse
Gaussian mixture (λ = 0.5).

discriminate extremely well between the two frailty distribution; the plot for
the correct distribution is a horizontal straight line as predicted, but the plot
for the incorrect distribution departs clearly from a horizontal line.

4 Example

For a real-data illustration of our methods, we used data on the duration of
a treadmill test undertaken by 978 successive patients at a cardiac clinic in
Athens. Figure 5 shows the simple diagnostic plots that were developed in
Section 2. The plot for the Burr distribution, on the right, has the expected
shape of a straight line preceded by a horizontal section. The plot for the
Weibull-Inverse Gaussian mixture, on the left, is curved as expected, but the
curvature is greater than it should be if this is the correct model. Figure 6
shows the diagnostic plots that were developed in Section 3. These indicate
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Fig. 5. Plots defined in Section 2 for data on 978 cardiac patients. Left: Weibull-
Inverse Gaussian mixture; right: Burr.
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Fig. 6. Plots defined in Section 3 for data on 978 cardiac patients. Left: Weibull-
Inverse Gaussian mixture; right: Burr.

clearly that the assumption of a Gamma distribution for frailty is acceptable,
because the estimates of its shape parameter at different times are scattered
about a horizontal line, but the Inverse Gaussian assumption is not.

5 Further research

Although graphical diagnostics have proved very useful in statistical mod-
elling, it can also be valuable to have formal statistical tests for the presence
of any frailty, thus showing whether or not it is necessary to use the models
considered here. In these models, one parameter of the distribution controls
both the presence and the degree of frailty. For example, when the frailty
distribution is Gamma(ν, ν), the parameter ν controls the amount of frailty
since V (Z) = 1/ν → 0 (ν → ∞). If the basic distribution is Weibull and
the unconditional distribution is therefore Burr, the presence of any frailty
can be examined by testing the null hypothesis ν = ∞ (or 1/ν = 0) by
likelihood-based methods applied to the Burr distribution. The theory for
one of these methods, the score test, was given by [Crowder and Kimber,
1997] for multivariate lifetime data and the details for the univariate case
which we are interested in by [Kimber, 1996]. (In fact, the test also holds
for other Weibull mixtures, not just for Weibull-Gamma = Burr.) Other
likelihood-based tests that can be applied include a Wald test and a likeli-
hood ratio for this parameter. A difficulty that arises is that the null value of
the parameter being tested falls on the boundary of the parameter space. In
such cases, the distribution of minus twice the log likelihood ratio is not given
by the usual chi-squared approximation. Instead, a mixture of chi-squared
distributions usually applies. We intend to complete a study of the likelihood
ratio test for this model and then carry out a simulation study to compare
the properties of the different tests in order to recommend the best one for
use in practice.
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