
Stability of the two queue system

Iain M. MacPhee and Lisa J. Müller

University of Durham
Department of Mathematical Science
Durham, DH1 3LE, UK
(e-mail: i.m.macphee@durham.ac.uk, l.j.muller@durham.ac.uk)

Abstract. We describe ergodicity and transience conditions for a general two
queue system with multiple service regimes, a dedicated traffic stream for each
queue, a further stream which can be routed to either queue and where completed
jobs can be fed back into the queues. There is only one class of jobs but the ser-
vice times and feedback probabilities depend upon the configuration of the servers.
Several different levels of control of the service regimes are considered. We use the
semi-martingale methods described in [Fayolle et al., 1995] and our results gener-
alise those of [Kurkova, 2001].
Keywords: controlled queue systems.

1 Introduction

In this paper we consider a system which has two queues with servers that
can be configured in several ways. Our main aim is to identify conditions
under which we can give a queue length dependent policy for choosing the
service configurations that guarantees the stability of the system.

The queues have independent Poisson arrival streams with rates λi, i = 1,
2 and there is an independent Poisson arrival stream with rate λ of jobs that
can be sent to either queue (we will call this the routeable stream). We
assume all jobs are of the same class and are served in the order they join
their queues but their service times depend upon their queue and the service
scheme in force while they are being served. Under server configuration k,
at most one job is in service at each non-empty queue and all jobs in queue
i have independent, exponentially distributed service times with mean µ−1

ki ,
i = 1, 2 (so the server configuration k and the destination of a routeable job
determines its service distribution). We label the server configurations by k =
1, . . . , K, the queue to which the routable stream is directed by j = 1, 2 so
that the finite set R of overall management regimes has members η = (k, j).
In addition the system has Jackson-type feedback with probabilities that
depend upon the current management regime. Any job that completes service
at queue i under regime η independently enters queue i′ with probability pη

ii′ ,
i′ = 1, 2 or leaves the system with probability pη

i0 ≡ 1−pη
i1−p

η
i2 ≥ 0. We will

assume throughout this paper that we can instantaneously switch between
different management regimes at the instants just after changes to queue
lengths.
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Example The model described above includes as a special case the model
with two servers, where server i can be used to process jobs at either queue
which it does at rate µi. This gives four service regimes s1s2 = 1 2, 2 1,
1 1 and 2 2 (i.e. server 1 at queue 1, server 2 at queue 2; server 2 at queue
1, server 1 at queue 2; both servers at queue 1; both servers at queue 2).
Given that the service rates are additive we get the pairs (µ1, µ2), (µ2, µ1),
(µ1 + µ2, 0) and (0, µ1 + µ2) respectively.

The question we consider is whether for such a system with a given set
of parameters, the management regime can be changed from time to time to
ensure that the queue lengths remain stable or whether the queue lengths
must grow indefinitely regardless of how the system is managed.

Similar systems but with fixed servers have been studied in the past using
transform methods, often under strong symmetry assumptions on parame-
ters, see [Feng et al., 2002] and [Foley and McDonald, 2001] who give stability
conditions for an n-dimensional JSQ model and carry out the large deviations
analysis of system occupancy for the two dimensional system.

We define the model we consider in section 2 and state our results in
section 3. We omit the proofs here to be able to describe the model in full
length. The proof is done using the semi-martingale methods described in
[Fayolle et al., 1995] and can be found in [MacPhee and Müller, ]. Our results
generalise those of [Kurkova, 2001] as we consider multiple service regimes
and do not require any symmetry.

2 Definitions

We now define the queueing system, its control, and the classes of control
policies that we wish to investigate.

2.1 Events, blocks and control policies

As the Lyapunov function results we use are described in terms of discrete
processes it is convenient to study a discrete time process which we now
describe. To simplify comparison of the process dynamics under different
management regimes we uniformise the continuous time jump process, fol-
lowing Serfozo [Serfozo, 1979], by choosing a constant ρ ≥ maxk{λ + λ1 +
λ2 +µk1 +µk2} and introducing a fictitious bell event which has exponential
inter-event times with rate ρ− (λ+ λ1 + λ2 + µk1 + µk2) at any given queue
lengths when regime (k, j) is used (so the total event rate has the same value
ρ in all states under all regimes). We now consider the uniformised discrete
time process Ξ on state space Z2

0 ≡ {(x, y) ∈ Z2 : x ≥ 0, y ≥ 0}, obtained
by considering the queue lengths at bell events, arrival times of new jobs
and at service completions and consequent re-entry to queues. We will use
α = (x, y) ∈ Z2

0 to denote a typical state vector for Ξ.
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It is also necessary to define the policies by which the management regimes
at each state are selected. Our main interest will be in policies which choose
the same regimes over large sets of states, specifically cone shaped blocks for
which we need some notation. Let ei denote the unit vector in the axis i
direction and for non-zero z ∈ R2 let |z| denote the length of z and argu(z)
the argument relative to non-zero vector u ∈ R2 (the angle anticlockwise
from u to z). For any non-zero u, v ∈ R2 let `(u) = {z ∈ R2 : z = tu, t > 0}
denote the half-line in the direction u and

C(u, v) ≡ {z ∈ R2 : |z| > 0, 0 < argu(z) < argu(v)} (1)

the cone swept anticlockwise from direction u to direction v. The closure of
such a cone will be denoted C̄(u, v). We give specific labels to the positive
parts of the axes, Ai ≡ `(ei) as we will consider them as blocks subsequently.
It will also be convenient to define two special versions of the argument, one
relative to each axis Ai. Let R : R2 → R2 be reflection in the line z1 = z2
i.e. R(z1, z2) = (z2, z1) and define

arg1(z) = arge1
(z) , arg2(z) = arg1

(

R(z)
)

(2)

so arg2(z) is the angle measured clockwise from e2 to z.
A policy for controlling this discrete event system is a sequence Π =

{πn : n ≥ 0} of transition probabilities πn from Hn, the process his-
tory at time n, to R, the set of regimes i.e. for any history α0, η0, . . . ,
αn−1, ηn−1, αn the next action is selected according to the distribution
πn(α0, η0, . . . , αn, ·). This definition includes non-stationary, non-Markov
randomised policies though they offer no performance benefits when applied
to stationary Markov processes, see e.g. Blackwell [Blackwell, 1965]. Let ξi(n)
denote the length of queue i at time n and ξ(n) = (ξ1(n), ξ2(n)). A policy
Π along with an initial distribution for the queues determines a stochas-
tic process (Ξ,Π) = {(ξ(n), ηn) : n ≥ 0} which will only be Markov when
πn(α0, η0, . . . , αn, ·) is a distribution dependent only on αn.

A policy Π which selects an action a(α) with probability 1 whenever the
system state is α, where a is a map from Z2

0 to R, is a deterministic stationary
policy. Our main interest is in a class of these that we call block pure policies,
denoted Πb, where the state space Z2

0 is partitioned into a small number
of disjoint blocks, always lines or cones, such that a is constant on each
block C(u, v). We also investigate a generalisation of these, block randomised
policies, denotedΠr, where for each block the distribution πr

n(α, ·) is the same
at every state α in the block (so the Πb are degenerate cases of the Πr). With
such policies the process (Ξ,Πr) is Markov due to our assumptions about
Poisson arrivals and exponential service times.

2.2 The queues and their mean drifts

The process (Ξ,Π) has bounded jumps, specifically ±ei and ±(e2 − e1) and
so all moments of its jump distributions exist under any policy but in this two
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dimensional case our results can be stated in terms of their first moments.
For each regime η let

Mη = E(ξ(n+ 1) − ξ(n) | Hn, πn = η) (3)

denote the mean drift vector for any period when the policy selects regime η.
We have, for k = 1, . . . , K at states α ∈ Z2

+ ≡ {(x, y) ∈ Z2 : x > 0, y > 0}

Mη = (Mη
1 ,M

η
2 )

=

{

ρ−1
(

λ+ λ1 + µk2p
η
21

− µk1p
η
10
, λ2 + µk1p

η
12

− µk2p
η
20

)

, η = (k, 1)

ρ−1
(

λ1 + µk2p
η
21

− µk1p
η
10
, λ+ λ2 + µk1p

η
12

− µk2p
η
20

)

, η = (k, 2)
(4)

It is convenient to assume that when queue i is empty the policy selects a
regime η chosen from among those with µki = 0 (this is equivalent to having
non-idling servers). This ensures that equation (4) is also correct for histories
ending in states α ∈ A1 ≡ {(x, 0) : x > 0} and α ∈ A2 ≡ {(0, y) : y > 0}
for such service regimes. We will sometimes use the notation M ′ and M ′′ to
denote mean drifts for the system under appropriate regimes for A1 and A2

respectively.
Now consider any policy Π allowing randomisation. The mean drift of

our process Ξ under Π when the current state is α ∈ Z2
+ is a 2-dimensional

vector MΠ lying in the convex set

M =

{

∑

η

pηM
η : pη ∈ [0, 1] and

∑

η

pη = 1

}

(5)

the convex hull of the regime mean drifts. The extreme points of M are a
subset of the regime mean drifts Mη. When three or more of the Mη are
distinct it may happen that the two-dimensional interior,

Int2(M) ≡ {z ∈ M : B(z, ε) ⊂ M for some ε > 0} ,

(where for z ∈ R2
+, B(z, ε) = {z′ ∈ R2 : |z − z′| < ε}) is non-empty.

3 Classification of the system

The behaviour of the system depends on whether the convex set α+ M can
be separated from the origin by a line through α. Any set of parameters for
the process (Ξ,Π) falls into one the following four exclusive cases:

C1 (0, 0) = 0 /∈ M and there exists a state α ∈ Z2
+ and a line

Lv(α) ≡ {β ∈ R2 : vT (β − α) = 0} (6)

with normal vector v through α separating α+ M from the origin 0. If
there exists one such α ∈ Z2

+ then there is an infinite cone of such α.
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C2 0 /∈ M and there exists no α ∈ Z2
+ and line Lv(α) which separates α+M

from 0.

C3 Int2(M) is non-empty, 0 ∈ M and there exists no α ∈ Z2
+, v ∈ R2 such

that the line Lv(α) separates α+ Int2(M) from the origin.

C4 0 is a boundary point of M and either Int2(M) = ∅ or the tangent line
to α+M through α separates the origin from α+ Int2(M) for each α in
a cone within Z2

+.

See Figure 1 for examples of C1-C4.
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Fig. 1. From top left: C1, C2, and below C3, C4.

Note: the cases in C4 are critical but we will say very little about them in
this paper.

We start stating our results by giving sufficient conditions for instability
or stability respectively of the system under fully randomised controls in cases
C1 and C2 respectively. Next we show that in case C3 there is always a block
pure policy that makes (Ξ,Πb) ergodic and we also show that randomisation
allows the use of fewer blocks. Finally in this section we consider some
situations with even lower levels of control.
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3.1 Fully randomised controls

The following two results apply when even the most general policy Π is used
to control the queueing system. They imply that in cases C1 and C2 the
control policy used does not affect the stability or otherwise of the process.

Theorem 1 If 0 /∈ M and there exists an α ∈ Z2
+ and v ∈ R2 such that

the line Lv(α), see (6), separates α + M from the origin 0 then the process
(Ξ,Π) is unstable, in the sense that the total number of queued jobs almost
surely goes to ∞ linearly in time for any policy Π.

The conditions of the theorem can be pictured in an alternative way.
Specifically there exists a state α ∈ Z2

+ such that the line segment from 0
to α does not intersect α + M (it follows that if there is any such pair α, v
then there is an infinite cone of points α′ such that Lv(α

′) separates 0 and
α′ + M).

Theorem 2 If 0 /∈ M and there is no α ∈ Z2
+, v ∈ R2 such that Lv(α)

separates α + M from 0 then (Ξ,Π) is stable, in the sense that the total
number of queued jobs remains bounded in mean, under every policy Π.

The alternative description of the conditions here is that for every α ∈ Z2
+

the line segment joining 0 to α intersects α+ M. From this it follows there
is some v ∈ R2

+ such that 0 and α+M are in the same halfspace created by
Lv(α).

3.2 Block controls

In case C3 it does make a difference which policy is used for running the
system. In fact we can show that block pure policies Πb with at most a
handful of blocks are adequate to ensure stability of the process. Under
policies of this type the process (Ξ,Πb) is Markov so we can now talk about
ergodicity and transience.

Theorem 3 If 0 ∈ Int2(M) then there is a block pure policy Πb with at most
five blocks such that the Markov chain (Ξ,Πb) is ergodic.

Theorems 2 and 3 imply the following result.

Corollary 1 If 0 is a boundary point of M, Int2(M) is non-empty and there
exists no α ∈ Z2

+, v ∈ R2 such that Lv(α) separates α+ Int2(M) from 0 then
there is a policy Πb with at most three blocks such that (Ξ,Πb) is ergodic.

In Theorem 3 the number of blocks required to achieve ergodicity can be
reduced if block randomised policies Πr are used.

Corollary 2 If 0 ∈ Int2(M) and a block randomised policy Πr is used then
at most four blocks are necessary to ensure that (Ξ,Πr) is ergodic.
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Example [Foley and McDonald, 2001] consider a model which has fixed
servers (their service rate drops to 0 when their queues are empty), no feed-
back and is strictly JSQ. Their stability criterion for N = 2 queues is that
ρmax ≤ 1 where

ρmax = max{λ1/µ1, λ2/µ2, (λ+ λ1 + λ2)/(µ1 + µ2) }.

For the policy which sends the routable stream to the queue with minimum
weighted work our model has two regimes depending upon where the routable
traffic is sent and these have drift vectors

M1 = 1

ρ
(λ+ λ1 − µ1, λ2 − µ2) and M2 = 1

ρ
(λ1 − µ1, λ+ λ2 − µ2).

As ρ(M2 −M1) = (−λ, λ) ⊥ (1, 1) the line segment joining these two drift
vectors has the form z1 + z2 = (λ + λ1 − µ1 + λ2 − µ2)/ρ which can only
intersect R2

−
when ρmax < 1. The case ρmax = 1 is critical and we see that

our conditions are equivalent to those of Foley and McDonald in this case.

The simplicity of the classification based on the convex hull M confirms
that this geometrical approach combined with the Lyapunov function method
is a natural technique for studying stability of multi-queue systems though
of course large deviations results like those [Foley and McDonald, 2001] are
not achievable thisway.

3.3 Low levels of control

The results of [Fayolle et al., 1995] can also be used to classify the process
for any control policy that is block homogeneous for any small number of
blocks. It soon becomes evident to anybody who attempts this that there
are many ways for the process to remain stable and many more for it to
be transient. To illustrate this we now spell out the possible behaviours of
the queueing system with four blocks, specifically the axes A1, A2 and two
cones, C1 = C(e1, d) ∪ `(d) and C2 = C(d, e2) (see (1) for this notation), that
partition Z2

+. The two cones are not assumed to be symmetric i.e. the vector
d ∈ R2

+ need not be parallel to (1, 1).
We assume that in each of the Ai and Ci, i = 1, 2 a single management

regime is used (different blocks may have a common regime) with mean drift
vectors M1, M2 in blocks C1, C2 respectively and M ′, M ′′ in blocks A1, A2

respectively. This assumption about and notation for the regimes on the Ai

we will use in all further sections but the Ci are specific to this section.
We first label the M i according to the angles ϕi they make relative to the

axes Ai, i = 1, 2. For each M i angle ϕi = 0 is in the direction of Ai and ϕ1

increases clockwise while ϕ2 increases anticlockwise i.e. ϕi = 2π − argi(M
i).

We label the directions of theM i as A when 0 < ϕi < π, B when π ≤ ϕi ≤
3π
2

and D when 3π
2
< ϕi ≤ 2π. The various cases of this model are labelled with

label of M1/label of M2 so a label B/A means M1 has a positive y and a
negative x component and M2 has x component negative with y of either
sign. Figure 2 illustrates this labelling scheme for the directions of the M i

from origins αi.
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Fig. 2. Graphical explanation of the labels.

From the results in [Fayolle et al., 1995] on the random walk in the positive
quadrant, we have (in their terminology): (i) if a drift M i has an A label
then axis Ai is an ergodic face; (ii) that face will be outgoing, ingoing or
neutral according to the sign of the second vector field (which is scalar in
this case); (iii) if M i has a B or D label then face Ai is transient and
there is no second vector field. In this two dimensional case the sign of the
second vector field depends only upon the angles of M ′ and M1 for A1, M

′′

and M2 for A2. As with the angles ϕi it is convenient to name the angles
ψ1 = arg1(M

′) , ψ2 = arg2(M
′′) that M ′, M ′′ make relative to axes A1, A2

respectively, so ψi = 0 is in the Ai direction and ψ1 increases anticlockwise
while ψ2 increases clockwise. Now, following the sign of the second vector
field, we modify the labels for M i, i = 1, 2 to

A+ : ϕi + ψi < π, A− : ϕi + ψi > π, A0 : ϕi + ψi = π (7)

Using this labelling system we can identify 25 different cases to deal with. It
turns out that in many of the cases we get the same result for all choices of
the two cones i.e. all slopes d′ ≡ d2/d1 ∈ (0,∞) of the line `(d) separating
them. Theorem 4 classifies these invariant cases.

Theorem 4 The system is

(1) ergodic in cases A−/A− ∪ B, B/A−, B/B with
∣

∣

∣

M1

x

M1
y

∣

∣

∣
>

∣

∣

∣

M2

x

M2
y

∣

∣

∣

(2) transient in cases A+/A∪B∪D, A∪B∪D/A+, B/B with
∣

∣

∣

M1

x

M1
y

∣

∣

∣
<

∣

∣

∣

M2

x

M2
y

∣

∣

∣
,

D/B, B/D, D/D;

(3) null recurrent in cases A0/A0∪A+ ∪B, A+ ∪B/A0, B/B with
∣

∣

∣

M1

x

M1
y

∣

∣

∣
=

∣

∣

∣

M2

x

M2
y

∣

∣

∣
.



Stability of the two queue system 1197

M
′′

1

M
′′

2

M
′

2

M
′

1

A1

A2

M
2

2

M
2

1

M
1

2

M
1

1

`(d)

Fig. 3. Example of case D/A− where `(d) is important.

For systems with no control over the service regimes there still may be
some control over the routable traffic stream. The next theorem shows that
there are sets of parameters such that a change to the slope of the switching
line `(d) can change Ξ from a transient to an ergodic process. We describe
in detail only the case D/A0∪A−, depicted in Fig. 3, as case A0∪A−/D is
very similar. The relative slopes of M1, `(d) and M2 are crucial so we label
two key conditions:

E1: M1
2 < d′M1

1 (so `(d) is steeper than M1); E1′: M1
2 > d′M1

1 ;
E2: −M2

2 ≤ d′(−M2
1 ) (including cases with M2

2 ≥ 0 and implies −M2 is not
steeper than `(d)).

Theorem 5 In case D/A0 ∪ A− the ergodicity or non-ergodicity of the
Markov chain Ξ also depends on the slope d′ > 0 of the line `(d) separating
C1 and C2 as follows:

(a) if E1 holds then Ξ is transient,
(b) if E1′ holds then Ξ’s excursions into C1 have finite mean time and Ξ is

(i) ergodic if E2 holds and M2 is A− or if E2 does not hold and
(−M2

2 )M1
1 < M1

2 (−M2
1 ) (so M1 is steeper than −M2);

(ii) null recurrent if E2 holds and M2 is A0 or if E2 does not hold and
(−M2

2 )M1
1 = M1

2 (−M2
1 );

(iii) transient if E2 does not hold and (−M2
2 )M1

1 > M1
2 (−M2

1 ).

The case A0 ∪A−/D is simply the reflection of the above in the line `(1, 1).

Note: this theorem says nothing about the cases where M1 is parallel to
`(d) but in practice this will not be a major problem if the slope of the line
`(d) is under user control.
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