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Abstract. A queuing system resulting from a semaphorized intersection regulated
by semi-actuated control in a network urban traffic is considered. Modelization of
the queue length and of the delay of vehicles is crucial in the study of the perfor-
mance of intersections equipped with traffic signals. In these systems, the server
(green signal) is desactivated (red signal) during a random period of time. Due to
this particularity, models for classic queues such as M/M/1, M/G/1 and G/M/1
are not appropriate. In the urban traffic literature, the frequent desactivation of
the server as well as the variation of the service period are not well formulated. In
the present work a M/G/1 queue where the server occasionally takes vacations and
the service discipline is a non-gated time-limited policy is analyzed. The present
analysis follows [Leung and Eisenberg, 1991] who consider an application of these
models in telecommunications. Their implementation, given its complexity, is made
possible by using Laguerre functions when looking for an approximate solution of
the differential equations involved. One concludes that the mean delays of vehicles
given by this model are slightly smaller than those obtained by simulation proce-
dures, but they are able to give us a good approximation for larger flows, which is
of interest for traffic engineers, since, in that case, the approximations one can find
in the traffic literature are known not to be adequate.
Keywords: Queues, Server vacations, Traffic models.

1 Introduction

Waiting systems that admit interruptions of service often appear when the
server uses idle periods of time of one queue or one task to serve clients in
another queue or to perform another task. What matters is that, for these
idle periods, the server is not available nor operational for new arrivals to
the system (see e.g. [Doshi, 1986] for an interesting briefing on the subject).
Among other applications these waiting systems appear in the literature as
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models for computer networks and telecommunications, production and qual-
ity control.

Models with interruptions of the server have been analyzed for different
waiting systems, as the M/GI/1 or the GI/GI/1 queues with a single server,
no restrictions existing on the arrivals process or the service time distribution,
as long as the stationarity is maintained. In what regards the pause of the
server, the model may fall into different classes, depending on the situations
that trigger the pause (or vacation) and on the service policy, when the server
returns from a pause and is available for service again.

In the context of urban traffic, modeling the queue length and the waiting
time (delay) of vehicles is fundamental if one wants to study the performance
of semaphorized intersections. Here we are concerned with semi-actuated
intersections, which means that there are a main street and a secondary
street and a sensor is placed in the secondary street, enabling the activation
of the green signal and thus of the vehicles in this street to go through
the intersection. The main difficulties involved in the analysis by means
of the queuing theory come from the need of a good characterization of the
circulating vehicles and drivers and from the fact that the desactivation of
the server for random periods of time (red signal) has to be incorporated in
the behavior of the queue. Due to this, essentially, the M/M/1, M/G/1 and
G/M/1 models do not satisfactorily fit the waiting phenomena in these kinds
of traffic intersections.

A detailed study of semaphorized intersections with a fixed period of green
signal, which is not the case of semi-actuated signals, can be found in [Web-
ster, 1958] where a formula of the delay of traffic which is much used in the
traffic engineering practice is given. The traffic flow that reaches the intersec-
tion is assumed to follow a Poisson distribution and several parameters of the
model are reduced to mean values which are obtained from the results of the
M/D/1 and M/DX/1 queues. Nevertheless, with such models, the regular
but random desactivation of the served can not be well described. Indeed,
as the signal alternates between red and green, modeling a semaphorized
intersection is a problem lying in the class of queuing systems with server va-
cations [Doshi, 1986], with the particularity that the server remains inactive
for random time durations. [Heidemann, 1994] proposes an analytic model
that includes server vacations, starting from the assumption that the arrival
process is Poissonian, that the intersection has a fixed cycle regulation, that
the interval between departure of vehicles is constant and the traffic capacity
is one way only. With these restrictions the probability generating functions
for the measures of performance queue length and delay of a vehicle can be
derived from the associated Markov chains. More recently [Alfa and Neuts,
1995] suggested the use of discrete time Markov arrival processes to describe
the nature of platoons in the traffic flow.

In the present work a M/G/1 model for which the server occasionally
takes a vacation and the service policy is non-gated time-limited is analyzed.
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The term time-limited refers to the fact that the server is available to the
queue for a maximum time duration at each visit (constant Tm). The term
non-gated refers to the fact that clients that arrive while the server is active
are candidates for service during this visit of the server in as much as the
maximum service time Tm is not achieved. Clients are served in a FIFO
regime and the server starts a vacation as soon as all clients in the queue are
served or Tm expires, whatever occurs first. If the queue is empty when the
server returns from a vacation it immediately starts a new vacation.

Our goal is to explore the theory of queues with server vacations, par-
ticularly the work by [Leung and Eisenberg, 1991], to find an approximate
expression for the mean delay of a vehicle in the context of semi-actuated
traffic using the comparison with the results obtained by numerical simula-
tion of an intersection in [Simões et al., 2002] to judge on the appropriateness
of the proposed method.

2 An equation for the amount of work

For the class of models introduced above, the probability density function
(pdf) of the amount of work at an arbitrary instant during a vacation period
of the server is obtained by solving a functional equation that characterises
the amount of work at the exact time the server starts a service period.
Solving this equation, due to its complexity, is done by means of a numerical
technique analogous to the one of [Weeks, 1966], based on the numerical
inversion of the Laplace Transforms (LT).

The complementary of the distribution function of the duration of a ser-
vice period (time between the beginning of service and the instant the queue
becomes empty, assuming that Tm is never achieved) is approximated by a
sum of Laguerre functions. Using the relation between the amount of work at
the beginning of a service period and the duration of the server busy interval,
the functional equation in transformed into a set of linear equations, from
which the solution corresponds to the coefficients of the Laguerre functions
in the expansion just mentioned.

Thus the amount of work in the queue at an arbitrary instant can be
obtained from the equation that runs the amount of work at the instants the
service starts serving the clients. From the decomposition of the amount of
work and the PASTA property [Wolff, 1982], the mean waiting time can be
deduced.

Notation:

x̄, x̄2
, X∗(·): mean, second moment and LT of the service time;

ν̄, ν̄2
, V ∗(·): mean, second moment and LT of the duration of the vacation;

ūp, fp(·), U∗

p (·): mean, pdf and LT of the amount of work at the beginning
of a service period;

P0(t): probability of the queue being empty at time t.

The following assumptions are made:
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i ) Clients arrive according to a Poisson process with parameter λ and the
service time follows a general distribution for which the first two moments
are finite;

ii ) The system has an infinite waiting room;

iii ) The system is in equilibrium and ρ(= λx̄) <
Tm

Tm + ν̄
;

iv ) The duration of a vacation (random variable) is independent from the
amount of work at the beginning of a service period.

The main theoretical result that we need when dealing with queues with
server vacations is the stochastic decomposition property
[Boxma and Groenendijk, 1987]: if the queue is in equilibrium, the LT of
the amount of work at the beginning of a service period may be written as
the product of the LT of the amount of work at the end of a service period,
U∗(s, Tm), by the LT of the amount of work that arrives during a vacation,
U∗

v (s). Making use of this property the major difficulty in the analysis of
models that have a limited service time lies in the characterization of the
amount of work at an arbitrary instant during a vacation period. In order to
overcome this difficulty performing the following steps is required:

i ) Set up the functional equation that characterizes the amount of work at
the beginning of a service period. The stochastic decomposition property
states that

U∗

p (s) = U∗

v (s) · U∗(s, Tm) . (1)

On the other hand one has U∗

v (s) = V ∗(λ − λX∗(s)) and

U∗(s, Tm) = eŝTm

{

U∗

p (s) − ŝ

∫ Tm

y=0

e−ŝyP0(y)dy

}

, (2)

where ŝ = s − λ + λX∗(s).
ii ) Equation (2) is solved numerically, given that 1 − P0(t) can be approxi-

mated by a weighted sum of Laguerre functions:

P0(t) sim= 1 −

N
∑

n=0

ane−
t

2T Ln

(

t

T

)

.

Thus

P ∗

0 (s) sim= 1 −

N
∑

n=0

an

s
(

s − 1
2T

)n

(

s + 1
2T

)n+1 . (3)

The LT U∗

p (s) is also approximated by means of Laguerre functions:

U∗

p (s) sim= 1 −

N
∑

n=0

an

ŝ
(

ŝ − 1
2T

)n

(

ŝ + 1
2T

)n+1 . (4)
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The approximations given in (3) and (4) are used in equation (2), from
which, using (1), one gets:

U∗

p (s) sim= U∗

v (s).eŝTm

{

e−ŝTm + U∗

p (s) −

N
∑

n=0

ane−(ŝ+ 1

2T
)TmLn

(

Tm

T

)

−

∫ Tm

y=0

e−ŝy
N

∑

n=0

ane−y/2T

[

1

2T
Ln

( y

T

)

− L′

n

( y

T

)

]

dy

}

.(5)

Notice that this equation is linear in the an for a given s with Re(s) ≥ 0.
iii ) The functional equation (5) is transformed into a linear system of equa-

tions, since, by taking s = iω and using N + 1 appropriated values for ω
in equation (5), a set of N + 1 linear equations is obtained (see [Weeks,
1966]). The coefficients an are known by solving this system.

iv ) To end with, by using the decomposition of the amount of work and the
PASTA1 property [Wolff, 1982], the mean amount of work in the system
as seen by a Poisson arrival is given by

ū =
λx̄2

2(1 − ρ)
+

N
∑

n=0

(−1)n(2T )(1 − ρ)an − ρν̄ + ρ
ν̄2

2ν̄
. (6)

The mean waiting time of a client is obtained by applying Little’s formula.

3 Application to the control of semi-actuated traffic

As mentioned in the introduction, traffic signals with semi-actuated regula-
tion are frequently used in intersections which consist of a main street and
a secondary street. The actuated phase serves the movement of vehicles
in the secondary street. The control variables that lead the efficiency of a
semi-actuated operation are the regulation plan of the semaphore and the
placement of the sensor. The difficulty in applying the semi-actuated control
is in the selection of an optimum combination of these operations. In the ab-
sence of a service call (non activation of the sensor) the green signal is always
given to the non-actuated phase. As soon as the sensor is activated a change
in the signals occurs. The time interval for this change to occur includes a
yellow period followed by a period of “all red” (cleaning time). During the
activation of the sensor the arrival of a vehicle in the actuated street extends
the interval of green signal of this phase by an amount of time so that the
minimum of green time is exceeded but not the maximum. It means that,
in semi-actuated traffic, the green time is adapted to the demand, having a
minimum and a maximum value. In this way, a larger number of vehicles is
able to pass through the intersection per unit of time.

1 Poisson Arrival See Time Average
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In the present work the intersection illustrated in Fig. 1 is considered.
The sensor is placed 5m away from the stopping line of the secondary street.
The times given to the regulation of the two phases are shown in Table 1. 
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Fig. 1. Scheme of a semi-actuated intersection.

Table 1. Times given to the regulation of the two phases.

Time (sec.) Semaphore 1 Semaphore 2

Green 20 to ∞ 7 to 40
Yellow 3 3
Extension of green – 4
All red 2 2

The degree of saturation, xsat = ρ
Tm + ν̄

Tm
, represents the ratio between

the mean number of vehicles that arrive during a cycle and the maximum
number of vehicles that may pass through the intersection during that period
of time. In the terminology of the queuing systems this parameter is known
as the congestion index.

The mean waiting times estimated by the model presented in Section 2
(referred to as the analytical model) are shown in Fig. 2 as well as the average
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delays experienced by drivers according to the simulation (see [Simões et al.,
2002] for the detailed simulation study). A Dirac function with a mass at the
point 27 and a Gaussian distribution with mean value equal to 2 and variance
0.04 are considered in the analytical model as the laws of the duration of a
vacation (red period) and of the service time, respectively, since these are the
best fit distributions in the case of semi-actuated urban traffic intersections.
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Fig. 2. Comparison between the mean delay estimated by the analytical model and
the simulated mean delay (ν̄ = 27 sec., x̄ = 2 sec. and Tm = 43 sec.).

The results suggest that, for approximately xsat > 0.7, the analytical
model gives good estimates of the mean delay of drivers. For 0.3 < xsat < 0.7,
however, the estimates given by this model are smaller than those obtained
by numerical simulation. This fact may be due to the diversity of reactions
that is typical of drivers behavior and of interactions between vehicles but,
most of all, the fact is that the duration of a vacation (red signal) is not really
bounded, since it is extended until the activation of the sensor, which means
it has no maximum value although it has a minimum.

It is important to remark that when dealing with the analytical model
one should be aware of the importance of choosing adequate values for N
and of the need of a high precision in the computations, as the numerical
method explained here is very sensitive to precision errors. Difficulties in
making these numerical procedures converging are also reported in the liter-
ature[Leung and Eisenberg, 1991] in the case of probability density functions
with jumps or discontinuities (service times or durations of the vacations that
are deterministic). In practice it is very much recommended to validate the
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outputs of the numerical procedures ensuring that the amplitudes of the an’s
are smaller than 10−8.

4 Final comments

An analytical expression for the evaluation of an approximation of the mean
delay of vehicles in semi-actuated traffic was found by applying systems of
queues with server vacations theory, while previous expressions were known
to be inappropriate for the semi-actuated case.

This procedure gives good approximations when the arrival flow is large,
which was not possible with heuristic expressions commonly used in traffic en-
gineering that had been developed for the fixed control case. The expressions
that we give here provide realistic estimates of the mean delay particularly
when the saturation index is below 70%, while for large traffic flows (conges-
tion scenarios) the estimates they provide appear to be smaller than the real
mean delays.

Having in mind improving the reliability of the results presented here
and others that will be obtained in the future, the numerical properties of
the relationship between N and T deserves a careful investigation, aiming
to establish, for different distributions of the service durations, which values
should be given to N and T in order to ensure good results when this method
is applied.
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