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1 Introduction

Automatic detection and tracking (ADT), as performed in radar and sonar,
process data y(t, ω) depending on time variable t and observation variable
ω, frequency or direction for instance. ADT decides whether signal from an
object to be detected is present or not at any time t and any location ω: this
is detection. Once such a positive decision has been taken at some time t0,
ADT has to estimate the location ω(t) of the signal at further times t ≥ t0:
this is tracking. The detection step is also named track initiation. Track
initiation and tracking are both time association processing. But, because
tracking performs only on the data in the vicinity of the tracks, while track
initiation has to perform on the whole data domain, tracking may use more
computationally intensive algorithms, especially algorithms based on a state
model that maps a space of states {x} for the detected object to the data
domain {ω}. Nevertheless this situation may be paradoxical with respect to
the fact that deciding that some object is present is at least as important
in some applications as once this decision is taken, estimating the state of
the object along time. Indeed the detection performance, expressed in terms
of detection probability and false alarm probability, is fully achieved by the
track initiation step. The continuous increase of the real time computation
power let us to envisage the application of the same kind of principle for track
initiation like for tracking. In this paper we propose such a new algorithm, a
sequential detector based on a hidden Markov model (HMM), that we named
the sequential Markov detector (SMD).

The track initiation in most existing radars and sonars rely on a same
principle: the P out of N detection. It performs on events detected from
single data elements that exceed a detection threshold r1. The integer N
is the duration of the detection test window along the discrete time axis. A
signal is detected when there are events at P times at least within the window.
This criterion may be refined with the supplementary condition that the mean
value of the data corresponding to the highest P events shall be larger than
a second detection threshold r2 > r1. The false alarm probability depends
on r1 and r2 and on the extent δω of the test window in the data domain.
Increasing δω results in increasing both the false alarm probability and the
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capability for accommodating a signal drift along time in the observation
domain. In practice, δω is generally set up at most equal to the resolution of
the sensor and the time duration N is set up small enough so that the signal
drift cannot exceed this extent. Then N may have to be limited to a few
units, a constraint that prevents from taking the full benefit for detection
from long signal duration. Whatever be the P out of N variant used in
practice, N is most often smaller than 10. This may be also a limit related
to the duration of the shortest signal to be detected.

In the “track-before-detect” (TBD) approach for ADT, tentative tracks
are formed before being validated. Because the data are integrated on a
longer time duration according to some model for the dynamics of the object
to be detected, this approach is better suited to low signal-to-noise ratio
condition. This processing is most often done on data blocks of fixed duration.
In [Tonissen and Evans, 1996], the data are integrated along candidate paths
by means of a dynamic programming algorithm. In [Barrett and Holdsworth,
1993], HMM is used for likelihood ratio testing. Sequential detection, which
allows for taking a decision about presence or absence of a signal embedded
in noise, from a variable number of data frames, is proposed for a constant
velocity target model in [Blostein and Richardson, 1994], but the test is
truncated and the data still are structured in blocks of fixed duration.

We introduce in this paper a new track initiation scheme combining HMM
and sequential detection, named the sequential Markov detector (SMD).
HMM allows for testing any path (x(t))t0≤t≤t0+∆t in the state space from
an exact expression of the joint likelihood ratio of this path and the data se-
quence (y(t, ωx(t)))t0≤t≤t0+∆t along the corresponding path (ω(t))t0≤t≤t0+∆t

in the data domain. Like the sequential probability ratio test (SPRT)
[Marano et al., 2005], SMD does not require fixing ∆t. But there is no
fixed fail threshold in SMD, which involves a factor exponentially decreasing
as a function of ∆t controlling an automatic reset process.

We review the principle of HMM detection in part 2 and introduce the
sequential Markov detector in part 3. Application of SMD for detection of
spectral lines in the time-frequency domain is presented in part 4. For this
application, we compare SMD to P out of N by means of a Monte-Carlo
simulation in part 5.

2 HMM detection

We assume that the time behaviour of the object to be detected from its
signal embedded in background noise is a Markov process taking its values
in a finite state space {x1 . . . xN}. Then the a priori probability for any
path X(t0, ∆t) = (t0, ∆t)t=t0...t0+∆t being the path of the object equals the
product of the initial state probability and the probabilities of the transitions
between the successive states x(t−1) and x(t) for t0+1 ≤ t ≤ t0+∆t. The N
initial state probabilities Pn = P [x(0) = xn] and the N2 transition probabili-
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ties Pn,m = P [x(t) = xn|x(t−1) = xm] are known parameters of our Markov
model. We assume that the data serie YX(t0, ∆t) = (y(t, ωx(t)))t=t0...t0+∆t

can be modelled as an independent random process with probability densities
p0 for the background noise and p1 for the mix of noise and signal:

p0(y(t, ωx(t))) ≡ P [y(t, ωx(t))|H0]

p1(y(t, ωx(t))) ≡ P [y(t, ωx(t))|x(t)]

where H0 is the hypothesis that there is no object. Then the joint probability
of X(t0, ∆t) and YX(t0, ∆t) can be written as

P [X(t0, ∆t), YX(t0, ∆t)] = P [y(t0 + ∆t, ωx(t0 + ∆t))|X(t0, ∆t)]

P [YX(t0, ∆t − 1)|X(t0, ∆t)]

P [x(t0 + ∆t)|x(t0 + ∆t − 1)]

P [X(t0, ∆t − 1)]

The last condition for our model being an HMM [Rabiner and Juang,
1986] is that the information from the state process about the data at some
time comes from the state at this time. Then the previous equation takes
the following recursive form:

P [X(t0, ∆t), YX(t0, ∆t)] = p1(y(t0 + ∆t, ωx(t0 + ∆t)))

P [x(t0 + ∆t)|x(t0 + ∆t − 1)]

P [X(t0, ∆t − 1), YX(t0, ∆t − 1)]

Since we have P [YX(t0, ∆t)|H0] =
∏t=t0+∆t

t=t0
p0(y(t, ωx(t))), we get also

such a recursive form for the likelihood ratio ΛX,Y (t0, ∆t) of (X(t0, ∆t), YX(t0, ∆t)):

ΛX,Y (t0, 0) =
p1(y(t0, ωx(t0)))

p0(y(t0, ωx(t0)))
P [x(t0)]

ΛX,Y (t0, ∆t) =
p1(y(t0 + ∆t, ωx(t0 + ∆t)))

p0(y(t0 + ∆t, ωx(t0 + ∆t)))
P [x(t0+∆t)|x(t0+∆t−1)]ΛX,Y (t0, ∆t−1)

For each state xn, let us consider the maximum value of ΛX,Y (t0, ∆t) for
all paths X(t0, ∆t) ending at xn:

Λ(xn, t0, ∆t) ≡ max {ΛX,Y (t0, ∆t)|x(t0 + ∆t) = xn}

It can be computed recursively by means of the Viterbi algorithm:

Λ(xn, t0, 0) =
p1(y(t0, ωn))

p0(y(t0, ωn))
Pn

Λ(xn, t0, ∆t) =
p1(y(t0 + ∆t, ωn))

p0(y(t0 + ∆t, ωn))
max

1≤m≤N
{Pn,m · Λ(xm, t0, ∆t − 1)}
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ωn being the location in the data domain corresponding to the state xn.
By comparing to a threshold the values of Λ(xn, t0, ∆t) for 1 ≤ n ≤ N ,

we perform a detection test that, among all tests operating on the same
time window, maximises the detection probability for a fixed false alarm
probability determined by the detection threshold value. This holds for any
signal starting before t0 and ending after t0 + ∆t. For some given signal,
the best performance is achieved when the processing time window equals
the time interval when the signal is present. In practice, this interval is often
unknown. A way for handling this problem is to perfom the processing for all
possible values of t0 and ∆t. In practice, a trade-off has to be found between
the computation cost and the detection performance by taking (t0, ∆t) from
some reduced subset into the set of the possible values.

3 Sequential Markov detector

SQPRT [Marano et al., 2005] is a detection test that does not require fixing
a priori ∆t. It computes recursively the likelihood ratio of an i.i.d. data
time serie and compares its current value to a downer threshold, the fail
threshold, and an upper one, the detection threshold. If the likelihood ratio
value is smaller than the fail threshold, H0 is decided. If it stands between
both thresholds, the likelihood ratio is multiplied by the likelihood ratio of
the next data element and a new test is performed. If it is higher than
the detection threshold, the signal presence hypothesis H1 is decided. The
false alarm probability Pf = P [H1decided|H0] relates mainly on the detection
threshold value, approximately equal to Pd/Pf , Pd being the desired detection
probability P [H1decided|H1]. The detection probability relates mainly on the
fail threshold, approximately equal to (1 − Pd)/(1 − Pf), close to 1 − Pd if
Pf � 1.

We look now at how SQPRT could be applied to the maximum likelihood
ratio Λ(xn, t0, ∆t) defined in section 2. Testing Λ(xn, t0, ∆t) for detection
is equivalent to testing all the likelihood ratio values of the paths X(t0, ∆t)
ending at state xn. The number of these paths is growing exponentially as a
function of ∆t because of the number of state transitions allowed at each time
step. So does the false alarm probability of the test performed on the maxi-
mum value Λ(xn, t0, ∆t). For making this probability independent on ∆t, we
should decrease by an inverse factor the SQPRT false alarm probability Pf ,
so increase inversely the detection threshold value Pd/Pf . Equivalently the
threshold value may be kept constant and the likelihood ratio multiplied at
each update step by a constant factor K smaller than 1.

In the standard SQPRT, H0 is definitely decided and the test is ended
when the test value goes below the fail threshold approximately equal to
(1 − Pd)/(1 − Pf). This is because of the assumption that either H0 holds
for the whole data serie or H1 does. If the signal may be present only during
some time interval within the time interval of the data, the test must be reset
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once it failed in order to cope with the possibility that the past data might
be noise only and that signal might start at some further time. Then a rather
logical reset process would be to disregard the past data if, by doing so, the
current test value, and consequently the further ones because of the recursive
computation, are increased. Such reset process aims to prevent the signal
detection from being jeopardized by the noise data before the starting time
of the signal.

From the above principles, we can now introduce our new test, the Se-
quential Markov Detector. Its test value Λn(t) at each time t and at each
point of an HMM state space has the following recursive definition:

Λn(0) =
p1(y(0, ωn))

p0(y(0, ωn))
Pn

Λn(t) =
p1(y(t, ωn))

p0(y(t, ωn))
max{K max

1≤m≤N
{Pn,m · Λm(t − 1)}, Pn}

where K is a constant smaller than 1. There is the following relation between
Λn(t) and the maximum likelihood ratio Λ(xn, t0, ∆t) presented in section 2:

Λn(t) = Kt−τn(t)Λ(xn, τn(t), t − τn(t))

where τn(t) is the latest time anterior or equal to t when Λn was reset. As
discussed above, this relation is the one intended for making the false alarm
probability independent on ∆t and the Λn(t) reset condition is that the test
value from the current data only Λ(xn, t, 0) is larger than the test value taking
the past data into account Kt−τn(t−1)Λ(xn, τn(t− 1), t− τn(t− 1)). K is set
up so that the following relation holds:

P [K max
1≤m≤N

{Pn,m · Λm(t − 1)} > Pn|H0] =
1

2

expressing the fact that the probabilities for a path being continued or reset
are equal when there is no signal.

Λn(t) can be computed according to the expression of its above recursive
definition. This computation is quite similar to the Viterbi algorithm, except
for the reset process. In the next paragraph, we show how to apply it to
detection of spectral lines in the time-frequency plane.

4 Application to detection of spectral lines in

time-frequency data

The observed data y(t, f) = |S(t, f)|2 are the square magnitude of the output
of a time sliding Fourier transform performed on a scalar signal. Hence the
observation variable noted previously ω is the frequency, noted from now f .
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We define the state as being the pair composed by the frequency of the signal
to be detected and its time derivative, which we call the slope:

x(t) = (fx(t), ḟx(t))

We assume that the complex noise component of S(t, f) is zero-mean
gaussian with unit variance and that the signal amplitude is constant with
signal-to-noise power ratio r0. Then p0 and p1 are homothetic to centered
and uncentered χ2 laws with 2 degrees of freedom:

p0(y) = exp(−y)

p1(y) = exp(−y − r0) · I0(2
√

r0y)

with I0(z) = 1
π

∫ π

0
ez cos(θ)dθ.

Let us be TFT the length of the sliding time window of the Fourier trans-
form and kt and kf the coefficients such that the time step of the data y(t, f)
equals TFT/kt and the frequency step of the states equals T−1

FT/kf . Then the
slope step is taken equal to (kt/kf )T−2

FT , the ratio of the frequency step to
the time step. So the state space is a finite grid in the real plane with mesh
(T−1

FT/kf , (kt/kf )T−2
FT). Within this grid, we define the transition probabilities

Pn,m as following:

if
−1

2kfTFT
≤ fn − fm − ḟn + ḟm

2

TFT

kt

<
1

2kfTFT

then Pn,m = h

(

kfT 2
FT

kt

|ḟn − ḟm|
)

else Pn,m = 0

where h may be any decreasing function such that

h(0) + 2

∞
∑

i=1

h(i) = 1

The above relations means that the probability of the transition from the
state (fm, ḟm) to the state (fn, ḟn) is non zero if and only if the frequency
change fn − fm equals the mean slope value (ḟn + ḟm)/2 multiplied by the
time step TFT/kt within an error less than half the frequency quantization
step T−1

FT/kf . Then the transition probability is a decreasing function of the

absolute value of the slope change ḟn − ḟm. For a given state (fm, ḟm) and a
given slope change ḟn−ḟm, there is only one frequency fn which fulfils the first
relation. Then the last relation is equivalent to the condition

∑

n Pn,m = 1,
which expresses the fact that the sum of the probabilities, conditional with
respect to some state m, of all its possible successors n, equals 1.

In practice the setting of the function h that determines the transition
probabilities may be rather arbitrary because a statistical model for the fre-
quency fluctuation of the signals to be detected is seldom available. The
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broader is the peak of h at 0, the better is the processing capability to cope
with fast fluctuation of the frequency slope, but the lower is the performance
achieved on constant frequency slope signals, especially stable frequency sig-
nals. The performance decrease on stable frequency signals when the model
is changed from a setting suited to them to a setting suited to fluctuating
frequency slope signals is illustrated by results shown in the next paragraph.

5 Performance evaluation

We compared the performances of SMD and P out of N detector by means of
a Monte-Carlo simulation for detection of spectral lines in magnitude-square
FFT data as described in the previous paragraph. The data and the states
have the same time and frequency steps with kt = 2 and kf = 4. Note
that since kt is larger than 1, the assumption of time independent data is not
valid. This deviation with respect to the HMM theoretical frame, rather usual
because the data sampling frequency is above the Shannon bound in many
applications, is not expected to have a significant impact on the performance.

We tested two SMD settings having both their signal-to-noise ratio pa-
rameter r0 equal to 0.5 and uniform probability law for the initial states:
Pn = 1/N for any n. In the first setting, the slope set is {0}. Then our
model is equivalent to the one where the states are the frequencies and Pn,m

equals 1 if n = m and 0 otherwise (h(0) = 1 and h(i) = 0 for i > 0). This set-
ting is suited to detection of stable frequency signals. In the second setting,
the set of the values for the normalised slope kf ḟnT 2

FT/kt is {−2,−1, 0, 1, 2}
and the slope change kf (ḟn − ḟm)T 2

FT/kt takes its value in {−1, 0, 1} with
an uniform probability law: h(0) = h(1) = 1/3 and h(i) = 0 for i > 1. The
SMD output Λn(t) computed in the state space is projected to the frequency
axis according to the relation

D(t, f) = max{Λn(t)|fn = f}

The P out of N detector window covers four frequency channels; so its
bandwidth equals the frequency resolution T−1

FT of the Fourier transform. The
threshold r1 equals 2. The detector output D(t, f) is computed by placing
the (N, 4) window so that one of its points, arbitrarily fixed, is located at
the point (t, f) of the time-frequency data. Then D(t, f) equals the mean of
the P highest events when the P out of N condition is fulfilled and it equals
0 otherwise. Two P out of N detectors were tested: (P, N) = (3, 4) and
(P, N) = (6, 8).

Each value of the detection probability estimate P̂d in tables 1 to 3 is the
mean of the results of 3 independent Monte-Carlo runs, each run involving
two files of 2000×1000 time-frequency complex data. One file consists in noise
only samples S0(t, f). The data S1(t, f) of the second file are samples of the
sum of the noise S0(t, f) and I = 30 test signals having the same detection
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features (signal-to-noise ratio, time duration, frequency fluctuation). Hence
90 test signals were used for each value of the estimate P̂d.

The I test signals in the data S1(t, f) are located in I non-overlapping
time-frequency blocks [t0,min,i, t0,max,i] × [fmin,i, fmax,i] having the same size

∆t × ∆f . The computation of P̂d involves the processing outputs D0(t, f)
and D1(t, f) from the noise only and signal plus noise input data S0(t, f) and
S1(t, f). For one Monte-Carlo run, it has the expression:

P̂d =
1

I2

I
∑

i=1

I
∑

j=1

∣

∣

∣

∣

∣

max{D1(t, fi(t))|t1,min,i ≤ t ≤ t1,max,i} >
max{D0(t, fi(t))|t0,min,j ≤ t ≤ t0,max,j , fmin,j ≤ f ≤ fmax,j}

∣

∣

∣

∣

∣

where |true| equals 1, |false| equals 0, [t1,min,i, t1,max,i] is the time interval of
the ith signal included in [t0,min,i, t0,max,i] , and fi(t) is the signal frequency
determined by the relation

fi(t) = arg max
f

{

|S1(t, f) − S0(t, f)|
∣

∣

∣
fmin,i ≤ f ≤ fmax,i

}

The I detection threshold values are the maximum output values on the
I noise-only data blocks. Hence they relate to a mean number of false alarms
per data block equal to 1. We define the false alarm probability Pf,in as the
ratio of the output false alarm rate to the input rate of independent data.
Each data block containing ∆t × ∆f independent data elements, we have:

Pf,in =
1

∆t × ∆f

Each data block consists in 300 time lines of 200 adjacent frequency channels.
So we have Pf,in = 1/(300× TFT/kt)/(200 × T−1

FT/kf ) = 1.3 × 10−4.
Defining the false alarm probability with respect to the input data allows

a fair comparison between detectors having different rates of independent
decisions. In order to validate the above method, the detection probability of
the integrator of time constant equal to the signal duration Tsig was estimated
with the above method in the cases of stable frequency signals with Tsig =
100 × TFT (Table 1) and Tsig = 10 × TFT (Table 2). The well-known ROC
curves for the Rice case give the theoretical value of the signal-to-noise ratio
r corresponding to the measured detection performance (P̂d, Pf,out), Pf,out ≈
(Tsig/TFT) × Pf,in being the false alarm probability at the detector output
as considered in these curves. This theoretical value is given in parentheses
below the P̂d value in tables 1 and 2. The difference between both signal-to-
noise ratio values was always found smaller than 1 dB. This difference may
be caused not only by the estimation error on P̂d but also likely by the fact
that in our test we have a random detection threshold and a fixed false alarm
rate, while the ROC curves hold for a deterministic threshold and a random
false alarm rate.

From the results in tables 1 and 2, the cost of not knowing the signal
duration in stable state SMD with respect to the performance achieved by
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10 log10(r) -5 -4 -3 -2 -1 0 1 2 3

integrator 100 × TFT 0.53 0.83 0.93 0.98
(SNR(dB) for Pf,out = 0.013) (-5.9) (-4.5) (-3.6) (-2.8)

SMD – stable states 0.30 0.55 0.74 0.90 0.96
SMD – 5 slopes
h(0) = h(1) = 1/3

0.30 0.46 0.60 0.79 0.97

3 out of 4 0.31 0.40 0.50 0.67 0.90

Table 1. P̂d for Pf,in = 1.3 × 10−4 – Stable frequency – Tsig = 100 × TFT.

10 log10(r) 2 3 4 5 6 7

integrator 100 × TFT 0.54 0.88 0.92
(SNR(dB) for Pf,out = 0.013) (1.2) (3.0) (3.2)

SMD – stable states 0.47 0.84 0.90 0.99
SMD – 5 slopes
h(0) = h(1) = 1/3

0.49 0.63 0.89 0.95 0.99

3 out of 4 0.33 0.66 0.79 0.95

Table 2. P̂d for Pf,in = 1.3 × 10−4 – Stable frequency – Tsig = 10 × TFT.

the time integrator with time constant equal to the signal duration appears
being close to 1 dB when the signal contains 100 independent samples and
smaller than 1 dB when it contains 10 independent samples. The ability
to perform also on fluctuating frequency slope signal with the second SMD
setting is provided with an additional cost standing between 1 dB and 2 dB
in detection of stable frequency signals. Then the gain with respect to 3 out
of 4 detection stands between 3 and 4 dB for 100 independent sample signal
and between 1 and 2 dB for 10 independent sample signal.

Performances on fluctuating frequency signals are presented in Table 3.
The frequency fluctuation is gaussian with standard deviation σf taking val-
ues 0, T−1

FT , 2T−1
FT and 3T−1

FT . The time length of the fluctuation correlation
equals 15 × TFT. As expected, the performance from the integrator with
time constant equal to signal duration is much sensitive to signal frequency
fluctuation. 6 out of 8 detector performs better than 3 out of 4 detector only
when σf is smaller than 2T−1

FT . This illustrates the fact that the N parameter
of the P out of N detector is limited by the expected drift of the signal to
be detected. Anyway SMD still performs significantly better than P out of
N in all test cases.

An example of input and output data is displayed on Figure 1 where,
for illustration clarity, only one signal is embedded in noise, the data for-
mat being the same than the one described above. The signal features are
10 log10(r) = −1 dB, Tsig = 100×TFT and σf = 3T−1

FT . In practice, the SMD
output would be reset in the vicinity of a detection and a specific tracking pro-
cess should be started for maintenance and termination testing of the newly
validated track. This further tracking process, not performed in this work
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σf × TFT 0 1 2 3

integrator 100 × TFT 1.00 0.58 0.21 0.14
SMD – 5 slopes
h(0) = h(1) = 1/3

0.79 0.75 0.61 0.53

3 out of 4 0.31 0.28 0.23 0.17

6 out of 8 0.48 0.34 0.20 0.10

Table 3. P̂d for Pf,in = 1.3 × 10−4 – Fluctuating frequency – Tsig = 100 × TFT –
10 log10(r) = −1dB.

Signal+ noise input
|S1(t, f)|2

Zoom 300 times × 200
frequencies

Track: amplified signal
|S1(t, f) − S0(t, f)|2

Red circles: frequency bin
in [1, 1000] of maximum
SMD output D1(t, f)
Zoom 300 times × 200

frequencies

SMD signal + noise
output D1(t, f)

Full time-frequency range
2000 times × 1000

frequencies
Zoom window in red

Fig. 1. Example of input and output data.

entirely devoted to the track initiation problem, would avoid the spreading
of the SMD output peaks seen on Figure 1.

6 Conclusion

We presented a new track initiation method named the Sequential Markov
Detector. It is a “track-before-detect” processing which combines HMM
tracking and sequential detection. The detection test value is the a pos-
teriori likelihood ratio weighted by a factor exponentially decreasing as a
function of the time duration of the tested path in the state space. It is reset
when taking into account only the current data provides a larger value.

This new detector was shown to perform significantly better than the
usual P out of N detector for spectral line detection from time-frequency
data. The margin for further performance improvement from the same kind
of data and the same a priori information about the signal is likely small
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since the detection loss on a stable spectral line with respect to the constant
frequency integrator matched to the signal duration is at most 3 dB for
signal bandwidth-time product at most equal to 100, while at least a part
of this loss is the unavoidable cost for SMD ability to perform on unknown-
duration unstable-frequency signal. Further research should rather to look
at how exploiting richer data, for instance complex spectral data instead
of magnitude data, or more accurate a priori information within the state
model.
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