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Abstract. We present a new class of Markovian auto-models with a mixed state
space E = {0}U]0; +oo] involving both discrete and continuous states. We first
introduce an extension of the Besag’s auto-models to the multivariate case ; then we
define the specific Markovian random field defined on a lattice S, whose components
are valued in E with conditional distribution belonging to an exponential family.
We study two particular examples, based on the use of the exponential distribution
and the Gaussian positive distribution, and look for the admissibility conditions for
such models. Last, we present briefly some experimental results obtained for the
analysis of motion measurements of video sequences.
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1 Besag auto-models : multivariate extension

We consider a set of sites S = {1,..n}, a measurable space (E,&) (usu-
ally a subset of R?) equipped with the measure v. The product space is
(2,0) = (E%,£9%) with the product measure v° = v®%. A random field is
a probability measure p over (£2,0) ; we assume that p admits a probability
density f everywhere positive w.r.t 5.

The set of sites S is equipped with a graph structure G, symmetrical
and reflexive called the neighborhood graph; (i, j) denotes that i and j are
neighbors, for i # j. A non empty set C' C S is a clique if C is a single point
or if all elements of C are pairwise neighbors.

The field is Markovian if all the conditional distributions on the outer
configurations depend on the configurations on the neighborhoods.

Let us note 0 a reference layout of £2 (0 is 0 when E = N, R or R, ), then
we can write

wldz) = f(z)v®(de),  f(z) = f(0)expU(x)

with U(0) = 0. Moreover, the energy U is the sum of potentials ¢4, A € C
the set of cliques.



1142 Hardouin and Yao

According to Besag’s definition ([Besag, 1974]), a real-valued field X is
an auto-model if its distribution p can be written as

Ulx) = i)+ Y Biymiz;
ies {ij}

with 8;; = Bj;. Thus an auto-model is a Markovian field with cliques of at
most two points and linear pairwise interaction potentials.

We denote the conditional law on a site ¢ by f;(x;|.). The following result
characterizes Besag’s auto-models in the d—dimensional case.

Theorem 1 We assume that for each site i, the conditional density belongs
to a multi-parameter exponential family:

In fi(xi|.) = (Ai(.), Bi(z:)) + Ci(wi) + Di(.) , A; € R, By(w;) €R? . (1)

with B;(0) = C;(0) =0 for 0 € E. And that the family of sufficient statistics
{Bi(z;)} is regular in the sense that

foralli €S, Span{B;(z;), v; € E} =R* .

Then there exist for all i,j € S, i # j, a family of vectors a; € R? and a
family of d x d matrices satisfying 3;; = ﬂ; such that

Ai() =i+ > BiBjl;) - (2)
J#i
Consequently the set of potentials is given by
¢i(xi) = (o, Bi(wi)) + Ci(w:) , (3)
and
g (i, 05) = ¢ij (@i 25) = Bi () By Bj () - (4)

See [Hardouin and Yao, 2004] for the proof.

Conversely, a Gibbs distribution with potentials (3) and (4) has condi-
tional distributions given by (1) and (2) as soon as the energy U is admissible,
ie. [,expU(z)r®(dz) < oo.

2 Random variable with mixed states

2.1 Distribution of mixed exponential family £(p,¢) :

We consider X which takes values in £ = {0}U]0, 40|, equipped with the
measure

v(dz) = é(dz) + A(dx) (5)

where ¢ is the Dirac measure at 0, and A\ is the Lebesgue measure on
B(]0, +00]).
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We define the random variable X with mixed exponential family distribu-
tion on E. Let p €]0, 1] ; then X = 0 with probability p, and with probability
1 —p, X > 0 follows a distribution which belongs to an exponential family,
with the probability density :

ge(r) = G(§) exp(§,T(x)) , ©>0

where T is defined such as T'(0) = 0. The probability density of X on F is
(w.r.t. v):

fo(z) = pé(z) + (1 — p)ge(w)
e (1 o m 1=PIGE
—p p{u S L

= Z7'(0) exp(0, B(z))

(6.7}

where 6 = (01,02)" = (In %,E)t and B = (6%, T")" where we set §* =
1 — 4 in order to have B(0) = 0.

We denote this mixed distribution by L(p, £). Let us precise two particular
cases of further use.

Mixed exponential distribution &(p, \) :

Let ge(x) = Aexp{—Az}, = > 0. Then

1—p)A

/(@) = pexp(6* () n xx} = Z2710) exp(6, B(x)

Here 6 = (61,02)t = (In @,)\)t and the sufficient statistics is B(x) =
(6*(z), —x)t. Conversely we have A = 5 and p = %JFZ%.

Mixed positive Gaussian distribution G(p,o?)

With probability 1 —p, X=|Z| where ZsimN (0, 0?). The probability den-
sity of X is given by f(z) = Z71(0) exp(d, B(z)) with § = (61,602)" =

(In 2571\;2%2’#)1& and B(z) = (0*(z),—2®)". We get also 0® = ﬁ and

_ 2
p= 242705 exp 61

3 Markovian auto-models with mixed states

We now consider a random field X on S = {1,2,--- ,n}, X =
(X1, X2, ,X,), in F=FE% = ({0}U]0, +00[)5.

We assume that the family of the conditional distributions f;(z;].) belongs
to the family of mixed distributions £(p;(.),&(.)) described previously. In
other words, we can write (??) with

I fi(@i|.) = L(pi(.), & () = (Ai(), Bi(z:)) + C(xi) + Di(.)

with B;(z;) = (6* (), T} (x;))!. Theorem 1 ensures that there exists vectors
a; € R? and 2 x 2—matrices 3;; verifying (3;; = ﬁ;i such that
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Ai(1) = 0i(1) = i + 32,4, Biy Bi(z))
and the potentials of the joint energy are given by (3) and (4).

Let us specify the resulting auto-models when we take for the density g¢
of the positive component in each site first the exponential distribution and
next the positive Gaussian distribution. For each example, we give condi-
tions ensuring the admissibility of the models; then we specify them to the
four nearest neighbors system, with or without isotropy. We further use the
resulting models in two different contexts: we look for a “good” suitable set
of parameters of the auto-exponential model in the rainfall framework, and
apply the positive Gaussian auto-model to motion measurements of video
sequences.

3.1 Mixed auto-exponential models

We suppose that the conditional distributions are in the family of mixed
exponential distributions €(p;(.), Ai(.)). Then, there exist a; = (a;, b;)", Bij =

ij di; e s .

(Ccl” 61_3_ ) verifying ¢;; = ¢j; , €;; = €j; and d;; = d7; such that we can write
ij €ij

the global energy as:

U(z) =Y alB(z:)+ > B'(z:)B;B(z)) (6)

€S (4,5):(2,3)

U(-T) = ZiGS aié* (-Tz) — ZiES bll'l + Z@_J_) Cij(s* (901)5* (-T])
N Z(i,j):@',j) dijzid* () + Z(i,j) €ijTilj
(7)

We note that potential ¢(z;,x;) = z;6(z;) is not symmetric in (z;, ;).
Proposition 1 We assume that U satisfies the following condition (A) :

Vi€ SYACi, bi+ Y eadij >0
@ {SEte ®)

Then the energy U is admissible.

Proof: see [Hardouin and Yao, 2004].

Under condition (A), the model with density defined by f(z) =
Z YexpU(z) where U satisfies (6) or (7) is called mixed exponential auto-
model.

Conditional distributions:
By construction, for each 7, fi(z;].) sim E(pi(.), Ai(.)).
f(x;|2%) = Z71(0, %) exp{61 ()" (z;) — O2(z%)x;}, where
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01(2") = ait Y {ei0" (w5)—djjws} and Os(a') = b+ Y {dij6* () —eiz;}
J:(4,3) Ji(é,4)
Example 1 : Mixed exponential auto-model with the 4 nearest
neighbors.
We consider S = [1, M] x [1, N], and suppose that the energy is isotropic.
Then we can write the energy depending on 5 parameters 0 = (a, b, ¢, d, e) :

U(z) = Z(aé*(mi) —bx;) + Z{cé*(xi)é*(xj) +exiz;} —d Z z;i0* (z})
i€S (4,9) (4,5):(i,5)
(A) : b>0,b+4d>0ande<0

Conditional distribution is defined by :

f(xi|z?) = 2710, 2%) exp U;(x;]x?) , where Uj(z;]2’) = 01(x")6* (x;) — O2(2) a4
91(,@?) =a+ c(4 —v;(0)) — dv;(+)

with : < Oa(z*) = b+ d(4 — v;(0)) — evi(+)

v;(0) = Zj:(i,j) 6(zj) and vi(+) = Zj:(i,j} Ly

Particularly, (X; | %, X; > 0) sim€xp(f (")) and

P (Xi=0] o) = gy Gy

Application: We now assume that the context is rainfall data. We note
x; = 0 when it does not rain at the site i, and x; > 0 otherwise. The
model should satisfy conditions such that the rain increases with v;(+), and
is decreasing w.r.t v;(0), where v;(+) and v;(0) are the cumulated height of
rainfall on the neighbor sites and the number of neighbor sites where it does
not rain. This implies the following constraints on the parameters:

a€R, ¢>0,d<0, b>—4d, e = 0. We remark here that e = 0 ; we
then propose other models involving e # 0, which induces cooperation. One
solution is to consider a censored or a truncated exponential distribution on
the positive component, i.e the state space is F = {0}U]0, K| where K is a
fix positive constant. This model is then admissible without any condition
on the parameters and therefore permits to introduce cooperation between
neighbor sites, via parameter e # 0. Another solution which we propose in
the following example is to apply the mixed auto-model feature.

Example 2 : Double mixed exponential auto-model:

E = {0}U]0, K[U{K}. We are in the context of a 3-dimensional variable:
let p, g €]0,1[; we set X = 0 with probability p, X = K with probability
q, and X €]0, K[ with probability 1 — p — ¢, according to an exponential
distribution on this interval. Again, Theorem 1 ensures the model is well
defined; moreover, the model is admissible and allows cooperation between
neighbor sites.

3.2 (Gaussian positive auto-model

We now suppose that the conditional distributions belong to the family of
positive Gaussian mixed-state distribution G(p;(.),o?(.)) given above. Then,
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. . . ij A
there exist a family of vectors a; = (a;,b;)" , and matrices 3;; = <ccl” e?]»>
17 Cij
verifying c;; = ¢j; , ;5 = ej; and d;; = d;fz- such that we can write the global
energy as:

U(SC) = ZiES azé(xz) — ZiES szC? =+ Z(i,j) CZJ(;(SCZ)a(SCJ)
= 2 G): i) dija3d(x) + 2o6i) eijai T
(9)
Let us describe in more details the local distributions. By construction, in

each site i, the conditional distribution is G(p;(.), 0?(.)) with parameters

K3
Oi1(.) = ai + 3 4;lcijo(x;) — dfjxf]
0i2(.) = b; + Zj;ﬁi[dijé(xj) - eijx?]

. . . 1 ) . 2expbii(.)
ParthU1ar1y7 9112(') — 202(.) et pi() o \/ﬂ/ei,z(-)+26xp0i,l(')
necessarily for all i and its possible neighboring configuration (.) = (z;, j #
i), the variance parameter of the Gaussian component must be positive i.e.

1

. It follows that

Proposition 2 We assume that U satisfies the following condition (B) :
) V’iGS,VACS\i, bi+2j€Adij>0
(B) ' {V’L,j €S, €ij <0 (10)

Then the energy U is admissible. Consequently, the associated positive Gaus-
stan auto-model is well defined.

See [Bouthemy et al., 2004] for the proof.

Let us now describe the particular model using the four nearest neigh-
bors system ; we denote here by {i + (1,0), ¢ = (0,1)} the four neighbors
of i ; furthermore, we assume that the field is homogeneous in space, i.e.
the parameters are the same for all sites. Moreover, we will allow possible
anisotropy between the horizontal and vertical directions. Under all these
considerations and by the previous results, there exist a vector a = (a, b) and
two 2 X 2 matrices

&) _ [ cx dy _

such that Vi, o; = a, V{i,j}, Bi; =0 unless ¢ and j are neighbors where
Bi; =D for j =i+ (1,0), By =pB® forj=i+(0,1)

We need further to set parameters dj, d3, e1, es to zero, since otherwise
we get a repulsive field with neighbor sites in competition which is not suited
to the homogeneous motion textures we intend to analyze below.The model
has then 6 parameters (a, b, c1, 2, di,d2).
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Now we come for an application to video sequences. Temporal textures
(or dynamic textures) designate video contents involving natural (almost sta-
tionary) dynamic phenomena such as rivers, sea waves, moving foliage, etc.
Mixed state auto-models allow us to specify non linear models, to take into
account the spatial context and to introduce both symbolic information (no
motion) and continuous motion values, which is of great interest to handle
dynamic pictures; we do not model the time-varying intensity function but
the motion measurements themselves.

In order to evaluate the performance of the proposed modeling, we exam-
ine if the introduced auto-models can realize two fundamental characteristics
of a homogeneous texture, namely spatial isotropy and spatial stationarity.
For the positive Gaussian auto-models used here, isotropy occurs if (and only
if) ¢; = co and dy = da. The admissibility condition given in the former result
is then reduced to the unique simple condition b > 0.

In each experiment, we estimate the parameters by the usual pseudo-
likelihood method; this method has good consistency properties for classical
one-parameter auto-model and we conjecture that it is still the case for the
multi-parameters auto-models considered here. The full description and dis-
cussion of the empirical results can be found in [Bouthemy et al., 2004].

The first experiment is to consider motion from trees, which is believed
to be spatially isotropic, and close-up shots of a moving escalator, which
is clearly anisotropic (vertical motion). In the first case, we fit both the
6-parameter (a, b, ¢1, ca, d1,ds2) anisotropic (positive Gaussian) auto-model
and the 4-parameter (a, b, ¢, d) isotropic one. The obtained estimates of ¢y
and cy in one hand, and of d; and dy in another hand are almost identical,
and are moreover very close to the estimated values obtained for ¢ and d
in the istropic feature. While for the moving escalator, we get significant
differences between ¢; and ¢y as well as between d; and ds.

The second experiment was conducted to analyze spatial sationarity. For
a given texture, we divide the motion map into 12 blocks of the same size and
fit an anisotropic positive gaussian auto-model to each block. This has been
applied to sea-waves images and to a river motion texture. The obtained
results show that the 12 sets of the estimated parameters for the sea waves
texture are nearly the same, reflecting the expected spatial stationarity; while
they are significantly different for the river, which confirms the assumption
of non spatial stationarity for this kind of motion texture.

4 Conclusion

We have introduced a new class of random field models, namely mixed state
auto-models. This approach is made possible by extending Besag’s one pa-
rameter auto-models to the multi-parameter case. We provide a construction
of these models and show via the given examples how useful and promis-
ing these mixed state auto-models can be; we point out for instance their
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performance to realize some fundamental characteristics of an homogeneous
dynamic motion texture. We are currently developing other applications of
these new auto-models, namely fitting pluviometric measures; there are many
other possible applications in various domains, as soon as the data involves
both discrete and continuous components.

There are still several questions which need further investigations; first,
the convergence of the pseudo-likelihood has to be established; also, some
efficient Monte Carlo simulation algorithms have to be designed for these
mixed auto-models.
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