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Abstract. In this contribution, we investigate the use of a simple probabilistic
model for unsupervised document clustering in large collections of texts. The model
consists of a mixture of multinomial distributions over the word counts, each com-
ponent corresponding to a different theme.

The evaluation corpus is a medium size subset of the Reuters news feed, which
comes with a manual categorization. The similarity between the clustering pro-
duced and this existing categorization is computed in terms of mutual information,
and compared to the variations of log-likelihood and perplexity. We analyze the
influence of the smoothing parameter, of the size of the vocabulary and of the
addition of supervised information.

Our results, which are somewhat more pessimistic than those usually found in
the literature, show that it is difficult to reach the quality of the manual categoriza-
tion when no hint is given at the initialization step. We also show that a side effect
of the so-called “curse-of-dimensionality” is that this probabilistic model yields the
same results as a simpler, hard clustering algorithm.
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1 Introduction

Due to the wide availability of huge collections of text documents (news cor-
pora, e-mails, web pages, scientific articles...), unsupervised clustering has
emerged as an important text mining task. Several probabilistic models,
performing a soft (non-deterministic) clustering of the data, such as Prob-
abilistic Latent Semantic Analysis [Hofmann, 2001] or Latent Dirichlet Al-
location [Blei et al., 2002], have been introduced for that purpose. In this
contribution, we study the simpler model [Nigam et al., 2000, Clérot et al.,
2004] in which the corpus is represented by a mixture of multinomial dis-
tributions, each component corresponding to a different “theme”. Dirichlet
priors are set on the parameters and we use the Expectation-Maximization
(EM) algorithm to obtain maximum a posteriori (MAP) estimates of the
parameters.

To get a deeper understanding of the potentials of this approach, we
consider a reasonably simple corpus, consisting of 5000 Reuters news stories
taken from five different categories (as defined by Reuters). After introducing
the two measures used for evaluation (perplexity and mutual information
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between the obtained themes and the Reuters categorization), we investigate
the influence of several aspects of the model. An interesting experimental
outcome of this study is to show that, due to the high dimensionality of the
problem, the model behaves almost like a hard clustering algorithm (with a
specific distance measure).

2 The Model

We denote by np, ny and np, respectively, the number of documents, the size
of the vocabulary and the number of themes (that is, the number of compo-
nents of the mixture model). Since we use a bag-of-words representation, the
corpus is fully determined by the count matrix C' = (Cg(w))d=1...np ,w=1...nw s
where the notation Cy is used to refer to the word counts of a specific docu-
ment d. The multinomial mixture model is such that:

P(Ca;a, 8 Zat ™ C’ ,Hﬁcd(w) (1)

which corresponds to the following probabilistic generative mechanism:

e sample a theme ¢ in {1, ..., ny} with probabilities « = (a1, g, ..., an;);
e sample Iy (length of document d) words from a multinomial distribution
with parameter (I4; Bit, Bty - -« Bnwt)-

The notation ( is used to denote the collection of theme-specific word fre-
quencies. Note that the document length itself is taken as an exogenous
variable and its distribution is not accounted for in the model. As all docu-
ments are assumed to be independent, the corpus log-likelihood L is given
by 302, log P(Cus 1, ).

To estimate the model parameters, we use the Expectation-Maximization
(EM) algorithm with independent noninformative Dirichlet priors on « (with
hyperparameter 6,) and on the columns Be, for t = 1,...,ny (with hyper-
parameter ). Denoting the current estimates of the parameters by o and
0’ and the latent (unobservable) theme of document d by Ty, it is straightfor-
ward to check that each iteration of the EM algorithm updates the parameters
according to:

at H /Cd(w)

nr o yw a/Ca(w)
=1 Hw:l wt!

P(Ty=t|C;a/,3') = (2)

ap oo =1+ P(Ty=tC;d/,3) (3)
d=1

But 05 =1+ Ca(w)P(Ty =t|C;a,5)  (4)
d=1
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where the normalization factors are determined by the constraints Y ;" oy =
1and Y} 0%, Buwe =1, for t in {1,...,nr}. It turns out that 6, has little, if
any, influence and we set 6, = 1 in the following. For obvious reasons, we
refer to 63 — 1 as the smoothing parameter. We set it to 0.1 to begin with.

3 Evaluation

To evaluate the performance of the model for unsupervised document clus-
tering we use two different measures. The perplezity

= exp[—— Zlog Zat H ﬁcd(w)

quantifies how much the model is able to predict new data, denoted generi-
cally by the star superscript. The normalization by the total number of word
occurrences [* in the test corpus C* is conventional and used to allow com-
parison with simpler models such as the unigram model, which ignores the
document level. A second indicator is the mutual information between the
clustering produced by the model and the Reuters categories, which is more
directly related to our ability to accurately cluster the data. It is defined as:

nc nr

ML =33 (= ZPHOd (Tu =1]CY))

c=1t=1 "D d=1
n} Y2 PULE|CH)p(Ty = Cy)
(a2 PL|CH)) (32, P(Ta = t|C))

where P(I.|Cy) is the “probability” that document d belongs to category I
(usually 0 or 1, as most documents belong to a unique Reuters category) and
P(Ty = t|Cy) is the output of the model (probability that the document d
belongs to theme t). The estimated mutual information is then normalized,
respectively, by the marginal entropies of the themes and categories. The
harmonic average of those scores (between 0 and 1) is referred to as the (MI)
F-Score.

x log

3.1 Baseline Performance

We selected 5,000 texts from the 2000 Reuters Corpus, from five well-defined
categories (arts, sports, health, disasters, employment). All experiments are
performed using ten-fold cross-validation (with 10 random splits of the cor-
pus), with 30 iterations of the EM algorithm for each run and with five themes
(nr = 5). As will be seen below, initialization of the EM algorithm does play
a very important role in obtaining meaningful document clusters. After a bit
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of experimentation, we found that a good option is to make sure that, ini-
tially, all clusters overlap significantly and that none of the theme-dependent
word probabilities is too small. The “Dirichlet” initialization thus consists in
sampling an initial (fictitious) configuration of posterior probabilities in (2)
which is close to equiprobability™*.
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Fig. 1. Evolution of Perplexity and Log-likelihood over EM iterations.

To get an idea about the best achievable performance, we also used the
Reuters categories as initialization. We establish a one-to-one mapping be-
tween the mixture components and the Reuters categories, setting for every
document the initial posterior probability in (2) to 1 for a given theme. Figure
1 displays the corresponding training data likelihood (right) and perplexity
as a function of the number of iterations. The first striking observation is
that the gap between both initializations is huge. With the “Dirichlet” ini-
tialization, we are able to predict the word distribution more accurately than
with the unigram model but much worse than with the somewhat ideal ini-
tialization. This gap is also patent for the training data log-likelihood. In
the following, we report only the values obtained after the last EM iteration,
since the variations after the first few iterations are small (note that this
phenomenon is particularly marked for the Reuters initialization). Also, we
no more report the perplexity on the training data since it conveys the same
information as log-likelihood.

The Mutual Information F-Score is similarly oriented with a final value of
0.87 for the Reuters initialization and 0.25 for the “Dirichlet” one. To get an
idea of the signification of these numbers, we randomly perturbated a certain
amount of the Reuters tags and computed the MI F-Score with the original

* Tt is not possible to start with exact equiprobability, or, else, it can be seen from
the update equations that all word distributions are similar and the clusters never
separate from one another. Hence we sample from a Dirichlet distribution with
the same parameter for every component. This variable controls the variance of
the probabilities sampled. It also has an interesting influence on the results that
we do not develop here.
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categorization. Proceeding this way, perturbing (respectively) 5%, 15% and
50% of the document labels gives F-Score of 0.9, 0.7 and 0.25. Hence 0.25
corresponds to a rather poor performance. Now we check if this gap between
both initializations can be reduced when tuning the smoothing parameter.

3.2 Influence of the Smoothing Parameter
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Fig. 2. Perplexity as a function of smoothing.

Figure 2 depicts the influence of the smoothing parameter 3 —1 in terms
of perplexity. For both initializations, the best performances are obtained for
smoothing parameters between 0.1 and 2, with an optimum at 0.5. Clearly
using some prior information about the fact that word probabilities should
not get too small helps to fit the distribution of new data, even for words
that are rarely (or even never) seen in association with a given theme.
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Fig. 3. Evolution of mutual information as a function of smoothing

Figure 3 reveals a slightly different behavior for the MI F-Score. First,
except when using very large (5 or more) values of the smoothing parame-
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ters, which yields a serious drop in performance, the categorization accuracy
is rather insensitive to smoothing for the Reuters initialization.

Of more
practical interest however is the behavior for the “Dirichlet” initialization,
which is roughly consistent with what is observed in Figure 2, except for
the fact that the optimum is obtained for higher values of the smoothing
parameter (around 2). A possible explanation of this observation that more
smoothing improves categorization capabilities (even if it slightly degrades
distribution fit) is that the model is so coarse and the data so sparse that
only quite frequent words are helpful in categorizing; the other words are es-
sentially misleading, unless properly initialized. This suggests that removing
rare words from the vocabulary should improve the classification accuracy.

As an aside, it is interesting to observe, in figure 4, that the variations of
the MI F-Score is highly dependent on the initialization and the smoothing
parameter. For large (unrealistic) values, the more iterations we conduct,
the more inaccurate prior information we give to the model and the worst
the performances get. For the initialization “Dirichlet”, the optimal value of

05 — 1 (2) clearly corresponds to the higher increasing curve. From 3, the
clustering begins to degrade after 5 or 6 iterations.
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Fig. 4. Evolution of mutual information as a function of EM iterations, with dif-

ferent smoothing values

3.3 Adjusting the Vocabulary Size

A valid question, after having decided to ignore part of the vocabulary, is if
we should rather cut rare words (hapax) or frequent words (stop-words). We
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try both strategies, removing consecutevely tens, hundreds and thousands of
terms from the vocabulary. The words discarded are simply not taken into
account in the count matrix**.
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Fig. 5. Evolution of mutual information when removing rare words.

Results in term of perplexity are not helpful, since the size of the vo-
cabulary has an impact on perplexity which is hard to distinguish from the
variations due to a possible better fit of the model. The MI F-Score, on
the other hand, is meaningful even when the vocabulary sizes are different.
The results in Figure 5 suggest that we can substantially improve the per-
formance of the model with the “Dirichlet” initialization, by keeping a very
limited number of frequent words (around 2,000). Note that the obtained
F-Score is still far from reaching the performance attained with the Reuters
initialization. This agrees with our previous observation that even the rarest
word may be informative, when properly initialized.

On the other hand, removing frequent words almost always hurts as one
can see when reading the dashed curves from right (full vocabulary) to left
(all words removed from vocabulary). Only in the case of the “Reuters Ca-
tegories” initialization, discarding the 50 or 100 most frequent words leads
to a slightly better performance but it is hardly visible on the figure. Then
the MI F-Score steadily decreases when cutting frequent words. The score is
almost 0 with 20,000 rare words, which is not surprising, since, in this case,
the vocabulary only consists of words with 1 occurence in the whole corpus
and a text is therefore reduced to at most a dozen of terms.

** We do not study here the effect of another common trick: grouping all unknown
words under the token “Out Of Vocabulary”.



Probabilistic Unsupervised Text Clustering 121

3.4 Adding Supervised Information

Clearly none of the variants discussed so far is susceptible of bridging the gap
between the ideal results, obtained using Reuters categories, and the results
achievable in practice. To this aim, we consider using a limited number of
texts (2, 5, 10, 20 or 50) from each theme to initialize the theme-dependent
word frequency parameters. Note that in this case, the EM algorithm is used
in “semi-supervised” mode, updating only the posterior probabilities for the
texts whose category is truly unknown. In each case and each repetition (we
are still using ten-fold cross validation), we repeat the experiment ten times
to make up for the chances of picking “unrepresentative” texts.
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Fig. 6. Evolution of mutual information when using partial category information.

Figure 6 shows that, as expected, results improve with the number of
known text tags and that acceptable values are obtained quite fast: with 10
tags per theme (that is 1.1% of the training documents labeled), the obtained
F-Score is already about 0.7 (to be compared with 0.8 when 5.5% of the labels
are known and 0.9 when all the labels are known).

Figure 7 conveys the same impression and suggests that knowing 20 or
50 labels per category is almost equivalent in terms of perplexity and log-
likelihood. Hence, knowing a few percents of the document labels is enough
to catch up on word distribution modelling (perplexity) and a few additional
percents suffice to obtain very good categorization performance.

3.5 Equivalence with a Non-Probabilistic Algorithm

A surprising fact, when working with this model, is the huge fraction of pos-
terior probabilities (that a document belongs to a given theme) dramatically
close to 0 or 1. Indeed, when starting from Reuters categories, the propor-
tion of texts classified in only one given theme (that is, with probability one
up to machine precision) is almost 100%. Since we start from the opposite
point of “extreme fuzziness”, this effect is not as strong with the “Dirichlet”
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Fig. 7. Evolution of perplexity and log-likelihood when using partial category in-
formation.

initialization. Still, after the fifth iteration, more than 90% of the documents
are categorized with absolute certainty.

Therefore, we compare the results obtained with an algorithm similar to
EM but based on hard clustering. This is in fact a version of K-means, with

the following distance between a text d € {1,...,np} and theme (or cluster)
te{l,...,np}:
1
dist(d,t) = ———
’ n Cq(w
o T, 0™

This distance is computed for every document and every theme and each
document is assigned to its closest theme. The reestimation of the parameters
Buwt is done according to (4) where the posterior “probabilities” are always
either 0 or 1. «; simply becomes the proportion of documents in theme ¢
and (3,,; the ratio of the number of occurrences of w in theme ¢ over the total
number of occurrences in documents in theme ¢.

1 &
ap = — )
t np ; {det}

Zdet Ca (’LU)
P aet Ca(w)

We applied this algorithm to the same dataset, with the same initialization
procedures as above. At the end of each iteration, we compute the Mutual
Information F-Score between the fuzzy clustering produced by EM and the
hard clustering produced by this version of K-means.

Bwt =

e With the “Reuters Categories” initialization, the Mutual Information F-
Score between the clusterings produced is 1 after one iteration.

e With the “Dirichlet” initialization, which is somehow the opposite of a
hard clustering, the F-Score between the soft and hard clustering con-
verges very fast to 1 and is greater than 0.99 after five iterations.
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In both cases, the different outputs of the fuzzy and hard methods become
indiscernible after very few iterations. We believe that this behavior of EM
can be partly explained by the large dimensionality of the space of docu-
ments* **. This assumption can be verified with experiments on artificially
simulated datasets.

4 Conclusion

In this article, we study a mixture model of thematic multinomial distribu-
tions for corpus clustering. We show that, even though some parameters have
a real influence and actually help reduce the gap, there exists a large differ-
ence between the best achievable performance and the ones we are able to
obtain without prior supervised information. Eventually, we note that in this
case, a fuzzy clustering approach is just uselessly time consuming since we
get exactly the same results with a hard clustering version of the algorithm.
In future work, it would be interesting to check if the same conclusions
apply to more complicated models such as PLSA and LDA. Besides, we are
still looking for ways to improve the performances of the model with the
“Dirichlet” initialization, for example using other inference methods.
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