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Abstract. We consider a finite set of words W = {w1, w2, . . . , wν} which are
produced under the Markovian hypothesis. We study the distances between word
occurrences and we give explicit formulae for the corresponding distributions in the
case of having words of equal lengths.The obtained results can be applied to certain
problems concerning DNA sequences, as well as, general sequential analysis.
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1 Preliminaries

Consider an alphabet Ω = {α1, . . . , α`} with ` ≥ 2. We call word a finite
sequence of elements of Ω. Let W = {w1, . . . , wν} a finite sets of words where
wi = (αi1 , . . . , αiki

), αini
∈ Ω, ni = 1, . . . , ki where ki denotes the length of

word wi and let ki > 1. We assume that the set of words is reduced. Let
us consider a sequence of outcomes {J∗

n}n≥1 generated by a Markov chain
with state space Ω, and let P = (℘(αi, αj))αi,αj∈Ω, the transition probability

matrix. We write Pn
l = (℘n(αi, αj))αi,αj∈Ω, where

℘n(αi, αj) = P (J∗
n+1 = αj |J

∗
1 = αi).

A word wi occurs at time γ iff J∗
γ−ki+1 = αi1 , . . . , J

∗
γ = αiki

.

Definition 1 Let Wλ a subset of W .We define

U∗ = min{γ ≥ 1 : a word occurs at γ},

M∗
Wλ

= min{γ ≥ 1 : a word from the subsetWλ occurs at γ},

and let y0 be the first word which appears.
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Clearly, the variable U∗ indicates the waiting time (number of letters) for the
first occurrence of any word from the setW , while the variableM∗

Wλ
indicates

the waiting time (number of letters) for the first occurrence of any word from
the subset Wλ. In section 2 we assume words of the same length and we
obtain explicit formulae concerning the distributions of the above random
variables. In section 3, under the same assumption we model the process of
word occurrences via a semi-Markov model for which we derive the kernel
as well as relative results. The under consideration random variables are of
great interest for the study of biological sequences where the corresponding
alphabet is Ω = {A,C,G, T }.

Recurrent relations for variable M∗
{wi}

are given by Blom and Thorburn

(1982) in the i.i.d case, by Chryssaphinou and Papastavridis (1990) and Robin
and Daudin (1999) in the Markov case.

2 Words of the same length and without a word at the

beginning of the sequence

Let us examine the case where ki = k, ∀ wi ∈W. We construct a new Markov
Chain {X∗

n}n≥1 where

X∗
n = (J∗

n, . . . , J
∗
n+k−1), n ≥ 1, (1)

with state space Ωk = Ω × . . .× Ω and

ui = (αui

1 , . . . , α
ui

k ), ∀ i = 1, . . . , `k and αui
n ∈ Ω, ∀ n = 1, . . . , k,

The new transition matrix is

P̃ = (p̃(ui, uj)), ui, uj ∈ Ωk, (2)

where

p̃(ui, uj) = IP(X∗
n+1 = uj|X

∗
n = ui)

= IP(J∗
n+1 = α

uj

1 , . . . , J∗
n+k = α

uj

k | J∗
n = αui

1 , . . . , J
∗
n+k−1 = αui

k )

= I
{α

ui
2

=α
uj
1

,...,α
ui
k

=α
uj

k−1
}
℘(α

uj

k−1, α
uj

k ). (3)

The initial distribution is

IP(X∗
1 = ui) = IP(J∗

1 = αui

1 , . . . , J
∗
k = αui

k ) (4)

= σ(αui

1 )℘(αui

1 , α
uj

2 ), . . . , ℘(αui

k−1, α
ui

k ),

where σ is the initial distribution of Markov chain J∗. We note

P̃1 = (IP(X∗
1 = u1), . . . , IP(X∗

1 = u`k)). (5)
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Since W ⊆ Ωk, ∃ r1, . . . , rν ∈ {1, . . . , `k} : w1 = ur1
, . . . , wν = urν

. Let
Bc = Ωk \B, ∀B ⊆ Ωk. We define the matrices

P̃BcBc , P̃BcB, (6)

which are the restriction of the transition matrices P̃ in Bc×Bc and Bc×B
respectively. Generally ∀ B1, B2 ⊆ Ωk , let P̃B1B2

the restriction of P̃ in
B1 ×B2.

For Wλ ⊆ W , where | Wλ |= λ, we now define the nth-order transition
matrix

P̃ n
W c

λ
W c

λ
= (p̃ n

W c
λ

W c
λ
(ui, uj)), ui, uj ∈ W c

λ, (7)

where p̃ n
W c

λ
W c

λ
(ui, uj) = IP(X∗

n+1 = uj, X
∗
n ∈ W c

λ, . . . , X
∗
2 ∈ W c

λ|X
∗
1 = ui),

and IP1
W c

λ
W c

λ
= IPW c

λ
W c

λ
, IP0

W c
λ

W c
λ

= II`k−λ. Finally, let us define

P̃Wλ
= (IP(X∗

1 = ui)), ui ∈ Wλ, P̃W c
λ

= (IP(X∗
1 = ui)), ui /∈ Wλ. (8)

Now we are ready to present the following results.

Proposition 1 With the above notation the distribution of the random vari-
able M∗

Wλ
is given by

IP(M∗
Wλ

= n) =







0, n < k,

P̃Wλ
1
′
λ, n = k,

[P̃W c
λ
] × [P̃n−k−1

W c
λ

W c
λ

] × [P̃W c
λ

Wλ
]1′

λ, n > k.
(9)

where 1λ = (1, . . . , 1), (1 × λ matrix)

Proof. It is IP(M∗
Wλ

= k) = IP(X∗
1 ∈Wλ) = P̃Wλ

1′
λ. For n > k we have

IP(M∗
Wλ

= n) = IP(X∗
n−k+1 ∈Wλ, X

∗
n−k ∈W c

λ, . . . , X
∗
2 ∈W c

λ, X
∗
1 ∈ W c

λ)

=
∑

ui∈W c
λ

IP(X∗
n−k+1 ∈Wλ, X

∗
n−k ∈W c

λ, . . . , X
∗
2 ∈W c

λ | X∗
1 = ui)

IP(X∗
1 = ui)

=
∑

ui∈W c
λ

∑

uj∈Wλ

IP(X∗
n−k+1 = uj | X∗

n−k ∈W c
λ, . . . , X

∗
2 ∈W c

λ, X
∗
1 = ui)

IP(X∗
n−k ∈W c

λ, X
∗
n−k−1 ∈ W c

λ . . . , X
∗
2 ∈W c

λ | X∗
1 = ui)IP(X∗

1 = ui)

=
∑

ui∈W c
λ

∑

uj∈Wλ

∑

ul /∈Wλ

IP(X∗
n−k+1 = uj | X∗

n−k = ul)

IP(X∗
n−k = ul, X

∗
n−k−1 ∈W c

λ . . . , X
∗
2 ∈W c

λ | X∗
1 = ui)IP(X∗

1 = ui)

= [P̃W c
λ
] × [P̃n−k−1

W c
λ

W c
λ

] × [P̃W c
λ

Wλ
]1′

λ,

which completes the proof.
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Proposition 2 For every wi ∈ W the following is valid

IP(U∗ = γ, y0 = wi) =

{

P̃1 e′`k;ri
, γ = k,

P̃W c [P̃W cW c ]γ−k−1 P̃W cΩk e′`k;ri
, γ > k,

(10)

where en;m = (0, . . . , 1
︸︷︷︸

m−position

, . . . , 0) ( 1 × n matrix)

Proof. The case of γ = k is obvious, since IP(U∗ = k, y0 = wi) =
IP(X∗

1 = uri
). For γ > k we proceed as follows

IP(U∗ = γ, y0 = wi)

= IP(X∗
γ−k+1 = uri

, X∗
γ−k ∈ W c, . . . , X∗

2 ∈ W c, X∗
1 ∈W c)

=
∑

us /∈Wλ

IP(X∗
γ−k+1 = uri

, X∗
γ−k ∈W c, . . . , X∗

2 ∈W c | X∗
1 = us)

IP(X∗
1 = us)

=
∑

us /∈W

IP(X∗
γ−k+1 = uri

| X∗
γ−k ∈W c, . . . , X∗

2 ∈W c, X∗
1 = us)

IP(X∗
γ−k ∈W c, X∗

γ−k−1 ∈W c . . . , X∗
2 ∈W c | X∗

1 = us)

IP(X∗
1 = us)

=
∑

us /∈W

∑

ul /∈W

IP(X∗
γ−k+1 = uri

| X∗
γ−k = ul)

IP(X∗
γ−k = ul, X

∗
γ−k−1 ∈ W c . . . , X∗

2 ∈ W c | X∗
1 = us)

IP(X∗
1 = us)

= P̃W c [P̃W cW c ]γ−k−1 P̃W cΩk e′qk;ri
,

which ends the proof.

3 Words of the same length and with a word at the

beginning of the sequence

We now consider {Jn} where Jn = J∗
U∗+n, ∀n ≥ −U∗ +1. We want to study

the sequence J0, J1, . . . under the assumption that the word wi has occurred
with probability θi = IP(J−ki+1 = αi1 , . . . , J0 = αiki

), i = 1, . . . , ν. Without
loss of generality we can take θi = IP(y0 = wi), i = 1, . . . , ν.

The sequence {Jn, n ≥ 0} is a Markov chain with first order transi-
tion probabilities IP(Jn+1 = αj |Jn = αi) = ℘(αi, αj) and IP(J0 = αζ) =
∑ν

i=1 I{αiki
=αζ}θi.

In this case a word wi occurs at time γ iff Jγ−ki+1 = αi1 , . . . , Jγ = αiki
.
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3.1 The Semi-Markov Model

In the case where words do not overlap, Biggins and Cannings (1987), in-
troduced the idea of modelling the process of word occurrences via a semi-
Markov model. Recently, Robin and Daudin (2001) generalized the idea
considering the fact that words may overlap. Our aim is to determine the
kernel of this new process. In order to present our results we need some more
definitions and notations.

Definition 2 Let us define the stochastic processes {Un, n ≥ 0}, {yn, n ≥
0}, which describe the times of word occurrences and the corresponding words
respectively, where U0 = 0 and

Un = min{γ > Un−1 : a word fromW occurs at γ}, n ≥ 1, (11)

yn = wi, wi ∈ W, i = 1, . . . , `. (12)

The process {(yn, Un), n ∈ IN} is an homogenous Discrete time Markov
Renewal Process(DTMRP) since

IP(yn+1 = wj , Un+1 − Un = γ | y0, . . . , yn = wi, U0, . . . , Un) =

IP(yn+1 = wj , Un+1 − Un = γ | yn = wi) =

IP(y1 = wj , U1 = γ | y0 = wi) = qij(γ), ∀n ≥ 1

Let us consider the following notation

• ME , the set of non negative matrices on E × E.
• IE ∈ ME , the identity matrix, 0

Å
∈ ME , the null matrix.

• ME(IN), the set of matrix-valued functions: IN → ME . If A ∈
ME(IN),we have A = (A(γ) : γ ∈ IN), where for fixed γ ∈ IN, A(γ) =
(Aij(γ) : i, j ∈ E) ∈ ME .

Then q ∈ ME(IN) (E = {1, . . . ν}) is the discrete time semi-Markov kernel
relevant to the DTMRP {(yn, Un), n ∈ IN}. We have

q
(r)
ij (γ) = IP(yr = wj , Ur = γ | y0 = wi), (13)

where q(r) is the r- fold convolution of q .Then we can define

ψij(γ) =

γ
∑

r=0

q
(r)
ij (γ), wi, wj ∈ W, γ ∈ IN. (14)

We can write

ψij(γ) = qij(γ) +

ν∑

s=1

γ−1
∑

z=1

ψis(z)qsj(γ − z), for γ ≥ 1. (15)
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Definition 3 For all r ∈ IN∗, ∀wi, wj ∈W let M
(r)
ij be the number of letters

of the r-th occurrence of wj after wi’s occurrence.

Definition 4 For all Wλ ⊆W we define

MiWλ
= min

n≥1
{Un : yn ∈ Wλ} under the event {y0 = wi}. (16)

We will note Mij for Mi{wj}. Obviously Mij = M
(1)
ij .

If gij(γ) = IP(Mij = γ) and g
(r)
ij (γ) = IP(M

(r)
ij = γ), then

ψij(γ) =

{∑γ
r=0 g

(r)
jj (γ), i = j

∑γ
r=0 gij ∗ g

(r)
jj (γ), i 6= j.

(17)

Definition 5 We assume ki = k for all wi ∈ W. We define

Xn = (Jn−k+1, . . . , Jn), n ≥ 0, (18)

with

IP(X0 = uri
) = IP(y0 = wi) = IP(J−k+1 = αi1 , . . . , J0 = αik

),

IP(X0 = ui) = 0, ∀ ui /∈ W.

Clearly, {Xn, n ≥ 0} is a Markov Chain with state space Ωk =
{u1, . . . , u`k}, where ∀ i = 1, . . . , `k , ui = (αui

1 , . . . , α
ui

k ), αui

ζ ∈ Ω, ∀ ζ =

1, . . . , k and P̃ = (p̃(ui, uj)) = (IP(Xn+1 = uj|Xn = ui)), ∀ ui, uj ∈ Ωk.

Using the above definitions and notations we obtain the following results:

Proposition 3 For every wi, wj ∈ W we have:

qij(γ) =

{

e`k;ri
P̃ e′`k;rj

, γ = 1

e`k;ri
[P̃ΩkW c ][P̃W cW c ]γ−2[P̃W cΩk ]e′`k;rj

, γ ≥ 2
(19)

Proof. It is

qij(1) = IP(X1 = wj |X0 = wi) = e`k;ri
P̃ e′`k;rj

.

For γ ≥ 2 we have

qij(γ) = IP(Xγ = wj , X1 /∈W, . . . ,Xγ−1 /∈W |X0 = wi)

= IP(Xγ = urj
, X1 /∈W, . . . ,Xγ−1 /∈ W |X0 = uri

)

=
∑

un,us /∈W

IP(Xγ = urj
, Xγ−1 = un, Xγ−2 /∈ W, . . . ,X2 /∈ W,X1 = us|X0 = uri

)

=
∑

un,us /∈W

IP(Xγ = urj
, Xγ−1 = un, Xγ−2 /∈ W, . . . ,X2 /∈ W, |X1 = us, X0 = uri

)

IP(X1 = us|X0 = uri
)
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that is

qij(γ)

=
∑

un,us /∈W

IP(Xγ = urj
, Xγ−1 = un, Xγ−2 /∈W, . . . ,X2 /∈W, |X1 = us)

IP(X1 = us|X0 = uri
)

=
∑

un,us /∈W

IP(Xγ = urj
|Xγ−1 = un, Xγ−2 /∈W, . . . ,X2 /∈W,X1 = us)

IP(Xγ−1 = un, Xγ−2 /∈W, . . . ,X2 /∈W, |X1 = us)IP(X1 = us|X0 = uri
)

=
∑

un,us /∈W

IP(Xγ = urj
|Xγ−1 = un)

IP(Xγ−1 = un, Xγ−2 /∈W, . . . ,X2 /∈W, |X1 = us)IP(X1 = us|X0 = uri
)

= e`k;ri
[P̃ΩkW c ][P̃W cW c ]γ−2[P̃W cΩk ]e′`k;rj

.

Proposition 4 It is

IP(MiWλ
= γ) =

{
e`k;ri

P̃ΩkWλ
1
′
λ
′
, γ = 1

e`k;ri
P̃ΩkW c

λ
[P̃W c

λ
W c

λ
]γ−2P̃W c

λ
Wλ

1
′
λ, γ ≥ 2.

(20)

Proof. The random variable MiWλ
can be expressed as follows

MiWλ
= min{n ≥ 1 : Xn ∈ Wλ} over {X0 = wi}. (21)

If γ = 1, then

IP(MiWλ
= 1) = IP(X1 ∈Wλ | X0 = wi) = e`k;ri

P̃ΩkWλ
1′

λ.

If γ ≥ 2, then

IP(MiWλ
= γ) = IP(Xγ ∈Wλ, Xγ−1 /∈Wλ, . . . , X1 /∈ Wλ | X0 = wi)

=
∑

ur∈Wλ

IP(Xγ = ur, Xγ−1 /∈Wλ, . . . , X1 /∈Wλ | X0 = wi)

=
∑

ur∈Wλ

∑

us,un /∈Wλ,

IP(Xγ = ur, Xγ−1 = us, . . . , X1 = un | X0 = wi)

= . . . =
∑

ur∈Wλ

∑

us /∈Wλ

∑

un /∈Wλ

IP(Xγ = ur | Xγ−1 = us)

IP(Xγ−1 = us, Xγ−2 /∈Wλ, . . . , X2 /∈Wλ | X1 = un)

IP(X1 = un | X0 = wi)

= e`k;ri
P̃ΩkW c

λ
[P̃W c

λ
W c

λ
]γ−2P̃W c

λ
Wλ

1′
λ.
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