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Abstract. Markov mixtures of autoregressions (MMAR) have been recently used
to analyse the behaviour of non-linear and non-Gaussian time series. A special
MMAR model with periodic components and a non-homogeneous hidden Markov
chain is proposed here: the transition probabilities of the hidden chain are time-
varying, because they depend, through logistic functions, on the dynamics of exoge-
nous variables. We perform a complete Metropolis-within-Gibbs algorithm associ-
ated to the random permutation sampling for model choice and variable selection
and to constrained permutation sampling for the estimation of the unknown pa-
rameters and the latent data. An environmental application is developed on the
series of sulphur dioxide and meteorological variables recorded by an air pollution
testing station in the lagoon of Venice.
Keywords: Time-varying transition probabilities, exogenous variables, Metropo-
lis-within-Gibbs, random and constrained permutation sampling, sulphur dioxide.

1 Introduction

Non-linear and non-normal time series can be modelled by autoregressive
processes assuming that different autoregressions, each one depending on a
latent regime, alternate according to the regime switching, which is driven
by an unobserved Markov chain. When the chain is supposed homogeneous
these models are widely known as Markov switching autoregressive models,
introduced in the econometric literature by [Hamilton, 1994] to study eco-
nomic and financial time series. When the Markov chain is non-homogeneous
we have that the transition probabilities are time-varying and depend on ex-
ogenous variables. The class of non-homogeneous hidden Markov models de-
pending on deterministic exogenous variables has been proposed by [Diebolt
et al., 1994] in the classical framework.

In this paper we propose the Bayesian analysis of Markov mixtures of
autoregressions (MMAR) models with a periodic component and a non-
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homogeneous Markov chain defined on a general number of states, whose
transition probabilities depend on deterministic exogenous variables through
a logistic function. We introduce Metropolis-within-Gibbs algorithms for
the estimation of the unknown parameters and for the computation of the
marginal likelihood, needed for model comparison. In both cases we con-
sider the problem of label switching, which recently has become one of the
most interesting topics in the Bayesian analysis of independent and Markov-
dependent mixture models. We tackle label switching through constrained
permutation sampling algorithm in the case of parameter estimation and
through random permutation sampling in the case of marginal likelihood
computation.

In the applications these models can be efficient tools to analyse environ-
mental time series, whose main characteristics are: i) different unobserved
levels of pollutant mean concentrations, depending on the weather conditions,
ii) serially correlated data, iii) periodicities, iv) missing values, v) availability
of meteorological covariates. So we will apply our methodology to analyse a
three year series of hourly mean concentrations of sulphour dioxide recorded
in the lagoon of Venice.

2 The non-homogeneous Markov mixtures of periodic

autoregressions

The non-homogeneous Markov mixtures of periodic autoregressionsof or-
der (m; p) (NHMMAR(m; p)) are discrete-time stochastic processes {Yt;Xt},
such that {Xt} is an unobservable non-homogeneous discrete-time Markov
chain with a finite number of states, m, while {Yt}, given {Xt}, is an observed
autoregressive process of order p with a periodic component and depending
on exogenous variables with the conditional distribution of Yt depending on
{Xt} only through the contemporary Xt.

Let {Xt} be a discrete-time, first-order, non-homogeneous Markov chain
on a finite state-space SX with cardinality m (SX = {1, . . . ,m}) . For any
t = 2, . . . , T , Γt =

[

γt
i,j

]

is the (m×m) transition matrix, where γt
i,j =

P (Xt = j | Xt−1 = i), for any i, j ∈ SX ; the initial distribution is the vector
δ = (δ1, . . . , δm)′, where δi = P (X1 = i), for any i ∈ SX ; xT = (x1, . . . , xT )′

is the sequence of the states of the Markov chain and, for any t = 1, . . . , T , xt

has values in SX . At any time t = 2, . . . , T , the transition probabilities γt
i,j can

be obtained as logistic functions of the vector zt of exogenous deterministic
variables, i.e.

logit(γt
i,j) = ln

(

γt
i,j

/

γt
i,i

)

= z′tαi,j for any i, j ∈ SX

γt
i,j = (exp (z′tαi,j))

/(

1 +
∑

j 6=i exp (z′tαi,j)
)

for any i, j ∈ SX
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where αi,j is an n-dimensional vector of parameters, αi,j =
(αi,j,0, αi,j,1, . . . , αi,j,n−1)

′
, if i 6= j, and an n-dimensional vector of ze-

ros, if i = j; zt is an n-dimensional vector, zt = (1, zt,1, . . . , zt,n−1)
′
, for any

t = 2, . . . , T. Instead of placing the first or the last entry of the transition
matrix at the denominator of the logit as usual, we place there the diagonal
entry because this statement allows us to perform constrained permutation
sampling and random permutation sampling algorithms, as we shall see in
Sections 3. Notice that when the last n− 1 entries of zt are equal to zero for
any t, the Markov chain is homogeneous.

Hence, given the order-p dependence and the contemporary dependence
conditions, the equation describing the NHMMAR model is

Yt(i) = µi +

p
∑

τ=1

ϕτ(i)yt−τ +

q
∑

j=1

θj(i)wt,j + βt(i) + Et(i), (1)

where Yt(i) denotes the generic variable Yt when Xt = i, for any 1 ≤ t ≤ T
and for any i ∈ SX ; the autoregressive coefficients ϕτ(i), for any τ = 1, . . . , p
and for any i ∈ SX , depend on the current state i of the Markov chain; wt,j ,
for any 1 ≤ t ≤ T , are the observations of the j-th exogenous deterministic
variable, for any j = 1, . . . , q, that are elements of the matrix W of dimension
(T × q), weighted by the coefficients θj(i), for any j = 1, . . . , q and for any
i ∈ SX , that depend on the current state of the Markov chain. The term
βt(i) is the harmonic component of periodicity 2s, depending on the current
state i of the Markov chain

βt(i) =
s∗

∑

j=1

(

β1,j(i) cos (πjt/s) + β2,j(i) sin (πjt/s)
)

,

where s∗ is the number of significant harmonics (s∗ ≤ s) . Et(i) denotes
the Gaussian random variable Et when Xt = i, with zero mean and preci-
sion λi

(

Et(i)simN (0;λi)
)

, for any i ∈ SX , with the discrete process {Et},
given {Xt}, satisfying the conditional independence and the contemporary
dependence conditions.

By these statements the conditional distribution of any variables Yt(i),
given state i, is normal,

Yt(i)simN



µi +

p
∑

τ=1

ϕτ(i)yt−τ +

q
∑

j=1

θj(i)wt,j + βt(i);λi



 ,

for any t = 1, . . . , T and for any i ∈ SX , while the marginal distribution of
any variable Yt is a mixture of m normals, whose mixing distribution is a row
of the transition matrix Γt,

Ytsim

m
∑

i=1

γxt−1,iN



µi +

p
∑

τ=1

ϕτ(i)yt−τ +

q
∑

j=1

θj(i)wt,j + βt(i);λi



 ,
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for any t.

A sufficient condition for the stationarity of the process (1) is that all
the m sub-processes generated by the m states of the chain are station-
ary, that is, for any i ∈ SX , the roots of the auxiliary equations are
all inside the unit circle. To automatically satisfy the constraint on any
ϕi =

(

ϕ1(i), . . . , ϕp(i)

)′
, we can reparametrize ϕi in terms of the partial au-

tocorrelations ri =
(

r1(i), . . . , rp(i)

)′
of any sub-process, for any i ∈ SX ,

according to [Jones, 1987]. Our inference will be based on the logarithmic

transformation Rj(i) = ln
(

1+rj(i)

1−rj(i)

)

, which maps any partial autocorrelation

rj(i) from (−1; 1) to <, for any j = 1, . . . , p and any i ∈ SX .

In the framework of the mixture models the problem of identifiability
concerns the invariance of the mixture under permutation of the indices of
the components. In model (1) we have m states and we have m! ways to
label them; so different models are interchangeable by permuting their label-
ing. This is often called the “label switching” problem and it can be over-
come by placing some identifiability constraints on some parameters with
a data-driven procedure based on random permutation sampling algorithm
[Frühwirth-Schnatter, 2001]. In this paper we shall introduce the random
permutation sampling and the constrained permutation sampling algorithms.

Furthermore to be able to estimate the state-dependent seasonal com-
ponent we need to assume the same hidden state for all the s times of any
sub-period.

The unknown parameters and latent data of the NHMMAR to be esti-
mated are: α the matrix of the vectors αi,j ; µ the vector of the signals; λ the
vector of the precisions; R the matrix of the coefficients Rj(i); θ the matrix
of the coefficients θj(i); β the matrix of the state-dependent harmonic coeffi-
cients; xT the sequence of the hidden states; y∗ the vector of all the missing
observations. For our Bayesian inference, we place independent multivariate
normal priors on each entry of matrix α; independent normal priors on each
entry of vector µ; independent gamma priors on each entry of vector λ; inde-
pendent multivariate normal priors of dimension p on each entry of the vector
Ri; independent multivariate normal priors of dimension q on each vector θi;
independent multivariate normal priors of dimension 2s∗ on each vector βi.

Let yT = (y1, . . . , yT )
′
be the sequence of the observations; the posterior

distribution of the parameter vector ψ = (α, µ, λ,R, θ, β, xT , y∗) is

π
(

ψ | yT , y0, Z,W, V, δ
)

= f(α, µ, λ,R, θ, β, xT , y∗ | yT , y0, Z,W, V, δ) ∝
∝ f

(

yT , y∗ | µ, λ,R, θ, β,W, V, xT , y0
)

f
(

xT | α,Z, δ
)

p(α)p(µ)p(λ)p(R)p(β)p(θ),

where y0 = (y−p+1, . . . , y0)
′ are the initial values fixed for the p-dependence

condition; Z is the matrix of dimension (T ×n) of zt, the exogenous variables
of the Markov chain; V is a (T × 2s∗) matrix whose generic element on the
t-th row of the j-th odd column is cos(πjt/s), while the generic element on
the t-th row of the j-th even column is sin(πjt/s), for any j = 1, 2, . . . , s∗.
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3 Bayesian analysis

Bayesian approach to inference of mixture models is based on MCMC meth-
ods. We introduce a Metropolis-within-Gibbs procedure for model choice,
variable selection and for parameter estimation.

Model choice and variable selection can be performed by means of Bayes
factors in which the marginal likelihoods of the competing models are com-
puted according to [Chib, 1995] and [Chib and Jeliazkov, 2001] corrected
by the random permutation sampling algorithm [Frühwirth-Schnatter, 2001].
For model choice we need to select the unknown cardinality of the state-space
of the hidden Markov chain m and the autoregressive order p, while for vari-
ables selection we require to find the best subsets of explanatory variables Z
and W among all the exogenous variables to be included in the final model.
To encourage the moves between the m! subspaces, we can use the random
permutation sampling algorithm. So at the k-th iteration of the Metropolis-
within-Gibbs algorithm we use to estimate the marginal likelihood, once ψ(k)

has been drawn, we select randomly a permutation (ρ(1), . . . , ρ(m))
′
of the

current labeling (1, . . . ,m)′ and then relabel the sequence of hidden states
and the switching parameters.

We can estimate the unknown parameters of NHMMAR models via a
Metropolis-within-Gibbs procedure, that we briefly discuss here.

To overcome label switching the Metropolis-within-Gibbs sampler is run
on a subspace only, by placing some parameters in increasing or decreasing
order. The identifiability constraint is chosen ex post after simulations by
a data-driven procedure, based on random permutation sampling algorithm,
so as to respect the geometry and the shape of the unconstrained posterior
distribution; different identifiability constraints can be derived by different
data sets. By plotting the couples of the outputs of the estimates, obtained
via unconstrained Metropolis-within-Gibbs algorithm, performed associated
with random permutation sampling, we can check if there are as many groups
as the hidden states and if these groups can suggest special ordering in their
labeling. Without loss of generality, and since for our data set the constraint
is based on the precisions, we discuss our methodology assuming that the
entries of λ must be in decreasing order (λi > λj , for i < j, i, j ∈ SX), but
the procedures can be easily adapted to any other type of constraint. If λ
is not ordered, instead of rejecting the vector and going on sampling till an
ordered vector is obtained, we adopt the constrained permutation sampling
algorithm [Frühwirth-Schnatter, 2001]. At any k-th iteration of the MCMC
sampler, after the generation of the sequence of the hidden states, we gener-

ate the vector of the precisions; so we have m couples
(

i, λ
(k)
i

)

. If the λ
(k)
i ’s

are unordered, we apply a permutation ρ(·) to order them; consequently
also the corresponding i′s must be permuted according to the permutation,
{ρ(1), . . . , ρ(m)}; then the permutation is extended to the sequence of states
xT (k) just generated, and to the switching-parameters generated in the previ-
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ous iteration, ρ
(

µ(k−1)
)

, ρ
(

R(k−1)
)

, ρ
(

θ(k−1)
)

, ρ
(

β(k−1)
)

, ρ
(

α(k−1)
)

; finally
all the parameters and the missing observations are generated.

The iterative scheme of the Metropolis-within-Gibbs algorithm at the k-th
iteration can be summarized as follows:
1) the sequence xT (k) of hidden states is generated by the forward filtering-
backward sampling algorithm, [Carter and Kohn, 1994] and
[Frühwirth-Schnatter, 1994];

2) the parameters λ
(k)
i , for any i ∈ SX , are generated independently from

gamma distributions; the entries of the vector λ(k) must be in decreasing
order to satisfy the identifiability constraint. If λ(k) is not ordered, we apply
the constrained permutation sampling algorithm;

3) the parameters µ
(k)
i , for any i ∈ SX , are generated independently from

normal distributions;

4) the parameters R
(k)
j(i), for any j = 1, . . . , p and any i ∈ SX , are generated

independently, by a Metropolis step, from the random walk R
(k)
j(i) = R

(k−1)
j(i) +

UR, where UR is a Gaussian noise with zero mean and constant precision.

5) the parameters θ
(k)
i , for any i ∈ SX , are independently generated from

normal distributions of dimension q;

6) the parameters β
(k)
i , for any i ∈ SX , are independently generated from

normal distributions of dimension 2s∗;

7) the parameters α
(k)
i,j , for any i, j ∈ SX , with i 6= j, are generated inde-

pendently, by a Metropolis step, from the random walk α
(k)
i,j = α

(k−1)
i,j + UA,

where UA is a Gaussian noise with zero mean and constant precision matrix.
8) every missing observation y∗t is generated from the conditional normal
distribution.

Now, at the end of the k-th iteration of the MCMC sampler, the vec-
tor ψ(k) has been approximately simulated from π(ψ | yT , y0), if k is large
enough. We shall repeat these steps till we have an N -dimensional sample.
This sample will be used to estimate each entry of ψ by means of posterior
means, apart from the sequence of states, estimated thought posterior modes.

4 Application to air pollution in the lagoon of Venice

Air quality control includes the study of data sets recorded by air pollution
testing stations. We are interested both in the analysis of the dynamics of
the hourly mean concentrations of sulphur dioxide (SO2), in micrograms per
cubic meter

(

µg/m3
)

, recorded by an air pollution testing station in the
lagoon of Venice (Italy), and in investigating its relationships with the daily
meteorological variables. The series of the SO2 in the log scale from the 1st
of January 2001 to the 31st of December 2003 (26280 observations) is plotted
in Figure 1a and it can be noticed that some observations are missing. This
happens either because sometimes the station must be stopped for automatic
calibration or because of occasional mechanical failure, ordinary maintenance,
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or data quality inspections. Plotting the histogram of the values we can guess
the presence of hidden states by noticing an asymmetric distribution.
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Fig. 1. (a) Series of the SO2 hourly log-concentrations; (b) 120 hours autocorrela-
tions.

Just by looking at the series of observations we can notice a daily period-
icity (s = 24) with 1 peak a-days (s∗ = 1); the daily periodicity is confirmed
by the correlogram of five days (Figure 1b). Atmospheric concentrations of
the SO2 are influenced by many meteorological variables that are recorded
together with the pollutant by the same station; we consider the following co-
variates: wind speed, temperature, atmospheric pressure, humidity, rainfall
and solar radiation. Some of these variables will be included in the matrix W
of the exogenous variables influencing the observed process and in the matrix
Z of the covariates influencing the non-homogeneous Markov chain.

We develop our empirical analysis in three steps: i) model and variables
selection, ii) constraint identification, iii) parameter estimation.

i) Model selection is performed for m = 1, 2, 3, 4 and p = 0, 1, 2, 3, 4, 5, 6 and
the NHMMAR(3,1), i.e. a model with 3 hidden states and an autoregression
component of order 1, is the best among all the competing models. Also
variable selection is based on the values of the marginal likelihoods of all the
models we analysed. The results show that temperature, humidity and wind
are the variables to be included in the final model. They will be included
both in the matrix W and in the matrix Z.

ii) In the second step of our analysis we have to select the identifiability
constraint, which must respect the geometry and the shape of the uncon-
strained posterior distribution. Graphically analysing the outputs of the
unconstrained NHMMAR(3;1) model, we chose the constraint on the preci-
sions: λ1 > λ2 > λ3 (Figures 2a) because the decreasing ordering is evident
in the graph. Decreasing precisions is a reasonable constraint for these data,
because when the low hidden state occurs, the variability of SO2 data depend-
ing on it is low and the concentrations of pollution are also low; by contrast
when the high hidden state occurs, the variability of SO2 data depending on
it is high and the concentrations of pollution are also high.
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iii) Now we run constrained permutation sampling for the NHMMAR(3;1)
model to estimate its parameters. The dynamics of the fitted values can be
observed in Figure 2b: if we compare it with the dynamics of the actual data
(in Figure 1a), we can see that these simulated values correctly follow the
series according to the dynamics of the twenty-four hours. By this graph and
by the values of the descriptive statistics we calculated to assess the fitting
accuracy of the estimated model, we can argue that the fitting ability of the
model is satisfactory.

Missing observations are simulated as extra latent variables; Figure 2c
shows how simulated values fill the series according to the dynamics of the
observed data. The dynamics of the hidden states, representing the three dif-
ferent levels of pollution occured during the analysed period, can be observed
in Figure 2d, where we have depicted the sequence of the posterior modes of
all generated states. State 3 underlies the observations with the highest level
of pollution, while state 1 underlies those with the lowest level of pollution.
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Fig. 2. (a) Couples of outputs of means and precisions of unconstrained algorithm
with random permutations for m=3; (b) dynamics of the fitted values; (c) a subserie
of actual (solid line) and fitted (dashes); (d) the sequence of the hidden states

5 Conclusions

We recurred to Bayesian non-homogeneous Markov mixtures of periodic au-
toregressions to analyse a time series about the hourly mean concentrations of
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sulphur dioxide, whose dynamics is characterized by cyclicity, non-normality
and non-linearity. Model choice, exogenous variable selection and inference
have been performed through Metropolis-within-Gibbs algorithms, consider-
ing the label switching problem, which has been efficiently tackled by per-
mutation sampling.
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