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Abstract. We consider here ergodic homogeneous Markov chain with finite state
spaces. We study an estimator of the entropy rate of the chain based on the
maximum likelihood estimation of the transition matrix. We prove its asymptotic
properties for estimation from one sample with long length or many independent
samples with given length. This result has potential applications in all the real
situations modeled by Markov chains, as detailed in the introduction.
Keywords: entropy rate, homogeneous Markov Chain, maximum likelihood esti-
mation.

1 Introduction

Markov chains and entropy are linked since the introduction of entropy in
probability theory by Shannon [24]. He defined the entropy of a distribution
P taking values in a finite set, say E = {1, . . . , s}, as S(P ) = −∑s

i=1 pi log pi,
with the convention 0 ln 0 = 0.

For a discrete-time process X = (Xn)n∈N, the entropy at time n is defined
as the Shannon entropy of the n-dimensional marginal distribution of X.
Under suitable conditions, the entropy at time n divided by n converges.
When the limit H(X) is finite, it is called the entropy rate of the process.

The entropy rate was first defined in [24] for an ergodic Markov chain
with a finite state space E as the sum of the entropies of the transition
probabilities (pij)j=1,...,s weighted by the probability of occurrence of each
state according to the stationary distribution π of the chain, namely

H(X) = −
s∑

i=1

πi

s∑

j=1

pij log pij . (1)

Shannon [24] proved the convergence of n−1 log P(X1 = i1, . . . , Xn = in)
to H(X) in probability. McMillan [16] proved the convergence in mean for
any stationary ergodic process with a finite state space. This constitutes
the Shannon-McMillan theorem. The almost sure convergence proven by
Breiman [4] is known as the Shannon-McMillan-Breiman theorem. Many ex-
tensions have been proven since (see [10] and the references therein), but the
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entropy rate has an explicit form only for Markov or semi-Markov processes
(see [12]).

The entropy S(P ) of a distribution P is widely used in all applications in-
volving random variables; see [6], [8] and the references therein. The entropy
rate H(Y) of an i.i.d. sequence with distribution P is the entropy S(P ) of P .
A whole statistical tool-box has been developed in this regard and applied
to a wide range of applied domains. Having an explicit form for the entropy
rate of a Markov chain allows one to use it similarly in all applications in-
volving Markov modeling. For example, maximum entropy methods can be
considered (see [9]).

It is well-known that in information theory, the entropy rate of a source
measures its degree of complexity (see [6]), but the entropy rate is used in
many other applied fields. In time series theory, the ApEnt coefficient de-
scribes the degree of hazard in a time series, and Pincus [20] proved that
for a Markovian model, the ApEnt is equal to the entropy rate of the chain.
In finance, Kelly [14] introduced entropy for gambling on horse races, and
Breiman [5] for investments in general markets; Shannon-McMillan-Breiman
theorem appears as an ergodic theorem for the maximum growth of com-
pounded wealth when gambling on a sequence of random variables (see [6]),
and the admissible self-financing strategy achieving the maximum entropy is
a growth optimal strategy (see [15]).

When observations of the process are available, the need for estimating
the entropy rate obviously arises.

Approximations of entropy can be obtained by numerical algorithms. The
Ziv-Lempel algorithm allows one to get an approximation of the entropy
of a binary process, whichever be its distribution. Plotkin & Wyner [21]
derive an algorithmic estimator of the entropy rate for a queueing problem
in telecommunication networks, for measuring the scattering and clustering
of cells. Abundo et al. [1] compute numerical approximations of the entropy
rate via the ApEnt to explain the degree of cooperativity of proteins in a
Markov model with binomial transition distributions.

Basharin [3] introduced estimation of the entropy rate in the statistical
theory of random processes by considering the maximum likelihood (ML) esti-

mator p̂i = n−1
∑n

k=1 11(Xk=i) and the plug-in estimator H̃ = −∑s

i=1 p̂i log p̂i

of H(Y), for an i.i.d. sequence Y = (Yn) with distribution P = (p1, . . . , ps) on

a finite state space E = {1, . . . , s}. He proved that H̃ is biased but strongly
consistent and asymptotically normal. Misevichyus [18] considers an esti-
mator of the entropy rate of an homogeneous stationary Markov chain with
finite state space, based on the ML estimation of the transition probabilities.

For an estimation based on one sample of long length, problems may
arise from the non-observation of some states, especially if s is large. Several
procedures exist in order to avoid these problems.
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Meeden [17] constructs an estimator of the transition matrix by a ML
method modified by a Bayes procedure. He proves that this estimator is
admissible when the loss function is the sum of individual squared error
losses.

Another procedure consists in the series schemes (the number of observed
states, their probabilities and the transition probabilities may vary with n).
The main issue of these methods is the determination of the asymptotic
distribution (possibly normal, but also Poisson, centered or non-centered chi-
square, etc.) of the estimators thus obtained. For an i.i.d. sequence, Zubkov

[27] gives conditions on the series scheme for the asymptotic normality of H̃ .
Mukhamedkhanova [19] studies the class of asymptotic distributions of an
estimator based on the ML estimation of the transition probabilities for a
two-state stationary Markov chain.

Another approach consists in using several samples of finite length in
which all the states are observed infinitely often; see [2], [13, Chapter V] or
[23]. Moreover, practically, it may be simpler to observe many independent
trajectories of the chain with short length rather than one long trajectory.

We study here ergodic homogeneous but non necessarily stationary
Markov chains with finite state spaces. We study the estimator of the entropy
rate for non-stationary chains and prove its asymptotic properties for an es-
timation based one sample in Section 3. We generalize it to an estimation
based on several samples in Section 4. Some extension prospects are given in
Section 5.

2 Notation and definitions

Let (Xn) be an homogeneous ergodic (that is irreducible and aperiodic)
Markov chain with finite state space E = {1, . . . , s} and stationary distri-
bution (πi)i=1,...,s. Set, for i, j = 1, . . . , s,

p
(n)
i = P(Xn = i), n ≥ 0,

pij = P(Xn = j|Xn−1 = i), n ≥ 1,

p
(n)
(i,j) = pijp

(n)
i = P(Xn = j, Xn−1 = i), n ≥ 1,

in which pij does not depend on n due to the homogeneity of the chain. We

know from the ergodic theorem of Markov chains that p
(n)
i converges to πi

when n tends to infinity (see, e.g., [11]).
We will also consider the bidimensional Markov chain (Xn, Xn−1), which

is homogeneous and ergodic too, with transition probabilities

P(Xn+1 = l, Xn = k|Xn = j, Xn−1 = i) = pijδjk, (2)

(where δjk denotes Kronecker’s symbol). Its stationary distribution is given
by π(i,j) = πipij . Indeed, since π is the stationary distribution of X, we have
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∑s

i′=1 πi′pi′i = πi, or

s∑

i′=1

πi′pijpi′i = πipij , i, j = 1, . . . , s,

which is equivalent to

s∑

i′,j′=1

π(i′,j′)pijδj′i = π(i,j) i, j = 1, . . . , s.

Note that p
(n)
(i,j) converges to π(i,j) when n tends to infinity.

The entropy rate of the chain X, given in (1), can be written

H(X) =

s∑

i=1

πi log πi −
s∑

i=1

s∑

j=1

π(i,j) log π(i,j), (3)

This decomposition will be the basis of the definition of the estimators of
H(X) considered in the following.

3 Estimation from one sample with long length

Suppose we are given one observation of the chain, say X = (X0, . . . , Xn).
Let us set for i, j = 1, . . . , s,

Nn(i, j) =

n∑

m=1

11{Xm−1=i,Xm=j} and Nn(i) =

n∑

m=1

Nn(i, j).

It is well-known (see [2, Section 5] and the references therein, and also
[23]) that the following estimators of the transition probabilities (pij),

p̂ij =
Nn(i, j)

Nn(i)
,

are their ML estimators. Clearly, the stationary distribution (πi) is estimated
by

π̂i =
Nn(i)

n
, i, j = 1, . . . , s,

Note that when Nn(i) = 0, it is necessary to set p̂ij = 0 for all j = 1, . . . , s,
and π̂i = 0. When Nn(i) 6= 0 and Nn(i, j) = 0, we also have p̂ij = 0 and
suppose that pij = 0. Note that the scheme of estimation considered below in
Section 4 constitutes a means of avoiding such problems of non-observation.

The asymptotic properties given in the following proposition derive from
the law of large numbers and central limit theorem for Markov chains (see,
e.g., [7]).
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Proposition 1 The estimators p̂ij and π̂i are strongly consistent and asymp-

totically normal, in mathematical words, when n tends to infinity,

π̂i
a.s.−→ πi and

√
n(π̂i − πi)

L−→ N (0, πi(1 − πi)),

p̂ij
a.s.−→ pij and

√
nπi(p̂ij − pij)

L−→ N (0, pij(1 − pij)).

Replacing in (3) the probabilities by their estimators, we get the following
estimator for the entropy rate,

Ĥn =

s∑

i=1

π̂i log π̂i −
s∑

i=1

s∑

j=1

π̂(i,j) log π̂(i,j),

where π̂(i,j) = π̂ip̂ij = n−1Nn(i, j).
Misevichyus [18] proved the following theorem in the particular case of a

stationary chain (whose initial distribution is the stationary one). We give
here a shorter proof which holds true for any chain.

Theorem 1 Let X be an homogeneous ergodic Markov chain with a finite

state space. Then the estimator Ĥn(K) of H(X) is

1. strongly consistent;

2. asymptotically normal and unbiased when n tends to infinity.

Proof of Theorem 1

1. For proving that Ĥn converges almost surely to H when n tends to
infinity, it is sufficient to apply [26, Theorem 1.10, p59].

2. Set

Ĥ1 =

s∑

i=1

π̂i log π̂i and Ĥ2 = −
s∑

i=1

s∑

j=1

π̂(i,j) log π̂(i,j).

Since by Proposition 1, π̂i converges almost surely to πi when n tends to
infinity, the Taylor’s formula for x log x at πi, for πi 6= 0, implies that

Ĥ1 = H1 +

s∑

i=1

(log πi + 1)(π̂i − πi) −
1

2

s∑

i=1

(π̂i − πi)
2

[πi + Θ1(π̂i − πi)]3
,

for some 0 < Θ1 < 1.
Clearly, E [π̂i − πi] converges to zero when n tends to infinity. We get

from Proposition 1 that E [π̂i − πi]
2 = O(n−1). Hence Ĥ1 is asymptotically

unbiased.
By Proposition 1,

√
n(π̂i−πi) converges in distribution to N (0, πi(1−πi))

when n tends to infinity, hence the delta method (see, e.g., [25]) applies to

prove that
√

n(Ĥ1 − H1) is asymptotically centered and normal.
Since (π(i,j))i,j=1,...,s is the stationary distribution of the bidimensional

chain given in (2), the same arguments hold for H2, and the conclusion
follows. 2
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4 Estimation based on several independent samples

with fixed length

Suppose we are given K independent observations of the chain, say X(k) =

(X
(k)
0 , . . . , X

(k)
n ), k = 1, . . . , K, for a fixed integer n. Let us set

nK(i) =

K∑

k=1

11
{X

(k)
0 =i}

= Card{X(k)
0 = i : k = 1, . . . , K},

Nn,K(i, j) =

K∑

k=1

n∑

m=1

11
{X

(k)
m−1=i,X

(k)
m =j}

and Nn,K(i) =

s∑

j=1

Nn,K(i, j).

The following ML estimators of the transition probabilities (pij),

p̂ij(n, K) =
Nn,K(i, j)

Nn,K(i)
, i, j = 1, . . . , s,

have been computed and studied in [2].
Suppose that when K tends to infinity, nK(i)/K converges to a finite

quantity, say ηi, for all i = 1, . . . , s (with ηi > 0 and
∑s

i=1 ηi = 1). Then, the
ML estimators p̂ij(K) are strongly consistent and Anderson & Goodman [2]
proved that

√
Nn,K(i) [p̂ij(K) − pij ]

L−→ N (0, pij(1 − pij)).

Note that for the above result to hold, the initial distribution of the chain
nK(i) can be supposed to be either non-random, with multinomial distribu-
tion M(K, (ηi)i=1,...,s) or equal to the stationary distribution of the chain.

For estimating the stationary distribution from samples with finite length,
it is easy to see that it is necessary for the chain to be stationary, with then

π̂i(K) =
nK(i)

K
, i = 1, . . . , s.

Proposition 2 Suppose that the chain is stationary and that K is such that

nK(i)/K converges to a finite quantity, say ηi, for all i = 1, . . . , s, when

K tends to infinity. Then, the estimators π̂i(K) and p̂ij(K) are strongly

consistent and asymptotically normal, in mathematical words,

π̂i
a.s.−→ πi and

√
K(π̂i − πi)

L−→ N (0, πi(1 − πi)) (4)

p̂ij(K)
a.s.−→ pij , and

√
Kπ̂i(p̂ij(K) − pij)

L−→ N (0, pij(1 − pij)). (5)
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Proof of Proposition 2 Since the K samples are supposed to be
independent, (4) is a straightforward consequence of the strong law of large
numbers and of the central limit theorem for i.i.d. sequences. Finally, (5) is
proven in [2]. 2

Setting π̂(i,j)(K) = π̂i(K)p̂ij(K) = n−1Nn,K(i, j) and replacing in (3)
the probabilities by their estimators, we get the following estimator for the
entropy rate,

Ĥ(K) =

s∑

i=1

π̂i(K) log π̂i(K) −
s∑

i=1

s∑

j=1

π̂(i,j)(K) log π̂(i,j)(K).

Theorem 2 Let X be a stationary homogeneous ergodic Markov chain with

a finite state space. Suppose that nK(i)/K converges to a finite quantity, say

ηi, for all i = 1, . . . , s, when K tends to infinity. Then the estimator Ĥn(K)
of H(X) is

1. strongly consistent;

2. asymptotically normal and unbiased when K tends to infinity.

The proof follows the same lines as the proof of Theorem 1, with n re-
placed by K.

5 Conclusion

The above results have potential extensions in several directions. Extensions
to a countable state space or to a general Borel state space can be considered.
The parametric case, that is a Markov chain whose transition matrix depends
continuously on a parameter with dimension less than s, would also be of
interest for many applications; see for example [21] for a Bernoulli traffic
source, [1] for a Markov chain with binomial transition probabilities modeling
proteins interactions, or [6] for binary information source models.
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temps mobile. 2e édition, Masson, Paris (1994).
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