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Abstract. This paper is concerned with the analysis of multispectral observations,
provided by space or ground telescopes. The large amount and the complexity of
heterogeneous data to analyse lead us to develop new methods for segmentation
tasks, which aim to be robust, fast and efficient. Some prior knowledge on the
information to be extracted from the original image is available, and Bayesian sta-
tistical theory is known to be a convenient tool to take this a priori knowledge
into consideration. In this paper, we investigate the use of the Bayesian inference
on Markovian quadtrees for some reduction, fusion, segmentation or restoration
problems of great importance in multiband astronomical imagery.
Keywords: Markovian quadtree, Bayesian inference, fusion, data reduction, cop-
ulas, astronomy.

1 Introduction
This paper deals with the unsupervised segmentation, reduction, fusion or restora-
tion of multiband images. These different tasks are developed in an astronomical
multispectral imagery framework, and validated on raw data cubes. The main goal
of this presentation, consists in showing different processing chains describing the
power, the efficiency and the fruitfulness of hierarchical Markovian modeling based
on a quadtree topology. We will see that such modeling allows to deal with a large
varieties of data : missing data, multiresolution data, multiband data, strongly
noised data. In particular, we show how such approach is general and how this
tool is able to face with a large number of various image processing tasks. The pa-
per is organized as follows. The Markovian quadtree model is described in section
2. In section 3 a reduction methods on large data cube is coupled with quadtree
modeling, in order to provide a single segmentation map avoiding thus the curse
of dimensionality phenomenon. Then, in the fourth section, we propose to process
the wavelet coefficients on the raw data cube, and feed a Markovian quadtree with
the multiscale coefficients of the wavelet transform. Indeed, the quadtree topol-
ogy exhibits a suitable structure to deal with multiscale coefficients : in this way,
it becomes possible to use the different multi-scale segmentation maps obtained
along a quadtree to restore and fused multiband images. Particularly, the prob-
lem of between-channels correlation modeling in the non-Gaussian case is briefly
presented.

2 Markovian quadtree and segmentation tasks
Statistical Markovian approaches have proved to be fruitful to design robust and
efficient images analysis methods. In the context of multispectral images, handling
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Fig. 1. Example of a dependency graph corresponding to a quadtree structure on
a 16 × 16 lattice. Black circles represent labels and white circles represent multi-
component observations. Each node t has a unique parent t− and four “children”
t+. aij stands for inter-scale probability of label transition, whereas P n

i (ys) repre-
sents the likelihood to affect a label ωi with observation ys. Likelihood parameters
and Markovian quadtree parameters (aij and root probabilities) can be estimated
with, e.g., an EM algorithm. The segmentation algorithm re-estimates iteratively
the parameters of a given hidden in-scale-Markov model, to produce a new model
which has a higher probability of generating the given observation sequence. This
re-estimation procedure is continued until no more significant improvement in pa-
rameters can be obtained. The two-step computation of posterior marginals prop-
agates available information all over the tree : on one hand, the bottom-up step
spreads the influence of data to other levels up to the root, on the other hand the
top-down step computes the posterior marginals taking into account this informa-
tion. Thus, this proposed modeling scheme captures, over the quadtree, significant
statistical dependencies and provides a robust scheme for segmentation.

correlated observed data requires a well-designed modeling framework. Resorting
to a Bayesian scheme based on Markov models is indeed attractive when dealing
with large amount of multispectral observations. Nevertheless, the well known
Markov Field Models (MFM) lead to iterated optimization algorithms, not really
well adapted [Geman and Geman, 1984, Graffigne et al., 1995, Kato et al., 1996]
for many applications, even if some strategies to decrease the computing time have
been proposed in the last decade (e.g., [Pérez et al., 2000, Mignotte et al., 2000]).
This is due to the fact that most of Markov models are non-causal. As a con-
sequence, inference must be conducted iteratively, which might turn prohibitively
expensive. One way to circumvent this problem is to resort to a Markov model on a
quadtree where in-scale causality[Laferté et al., 2000, Provost et al., 2003] permits
non-iterative inference . A quadtree-based approach offers the well-known advan-
tages of standard hierarchical techniques (improved robustness, ability to deal with
multiresolution or missing data), while allowing for non-iterative inference as in the
case of hidden Markov chains [Giordana and Pieczynski, 1997]. Let G = (S, L) be
a graph composed of a set S of nodes and a set L of edges. A tree is a connected
graph with no cycle, where as a consequence, each node apart from the root r has
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a unique predecessor, its ”parent”, on the path to the root. A quadtree, as illus-
trated in Fig. 1, is a special case of tree where each node, apart from the terminal
ones, the ”leaves”, has four ”children”. The set of nodes S can be partitioned into
”scales”, S = S0 ∪ S1 . . . ∪ SR, according to the path length from each node to the
root. Thus, SR = {r}, Sn involves 4R−n sites, and S0 is the finest scale formed
by the leaves. We consider a labeling process X which assigns a class label Xs

to each node of G : X = {Xn}R
n=0 with Xn = {Xs, s ∈ Sn} where Xs takes its

values in the set Ω = {ω1, ..., ωK}, of the K classes. A number of conditional inde-
pendence properties are assumed. First, X is supposed to be Markovian in scale,
i.e.,1 P (xn|xk, k > n) = P (xn|xn+1). It is also assumed that the probabilities of
inter-scale transitions can be factorized in the following way [Laferté et al., 2000]:

P (xn|xn+1) =
Y

s∈Sn

P (xs|xs−), (1)

where s− designates the father of site s, as illustrated in Fig. 1. Finally, the likeli-
hood of the multiband/multisensor observations Y conditionally to X is expressed
as the following product (assuming conditional independence):

P (Y =y|x) =

R
Y

n=0

P (yn|xn) =

R
Y

n=0

Y

s∈Sn

P (yn
s |xs), (2)

where ∀s ∈ Sn, ∀n ∈ {0, ..., R}, P (ys|xs = ωi)
4
= fi(ys), captures the likelihood

of the data ys. Each site s of scale n can be associated with a label ωi. If data
are available at scale n, then the likelihood is expressed as fn

i (yn
s ). Of course, if

the data-driven terms do not follow a Gaussian law, the analytic expression of the
multidimensional density fn

i (yn
s ) is not always available. To overcome this difficulty,

one may decorrelate bands via an adequate mapping, compute the multidimensional
density of the decorrelated data as a simple product of the marginals and then
obtain fn

i (yn
s ) by Jacobian method [Provost et al., 2003]. Another solution is to

use copulas theory [Nelsen, 1998][Brunel et al., 2005] (see Annexe). In section 3,
we present a new way for multidimensional data-driven term computation, thanks
to a regularized mixture of Probabilistic Principal Component.

Sometimes, the lack of observed data on some locations within the pictures leads
to intricate segmentation problems but here, missing data can be easily inferred
[Provost et al., 2003]. In a general manner, we suppose the data available at different
levels n, including the finest level (n = 0). On one hand, when no observation exists
(for any given scale n), the likelihood fn

i (yn
s ) is set to 1. On the other hand, if we

have images of the same area at different levels of resolution, the quadtree structure
can be still used and permits to properly consider all the available data. It is a way
to conduct the segmentation while merging data. From these assumptions, it can
be easily inferred that the joint distribution P (x,y) can be factorized as follows :

P (x,y) = P (xr)
Y

s6=r

P (xs|xs−)

R
Y

n=0

Y

s∈Sn

P (ys|xs). (3)

One of the interests of this model lies in the possibility of computing exactly the
posterior marginals P (Xs|Y ) and P (Xs, X

−
s |Y ) at each node s within two passes

1 To simplify notation, we will denote the discrete probability P (X = x) as P (x).
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in an unsupervised way [Delmas, 1997]. The segmentation label map x̂ to be
determined is finally given by:

x̂s,s∈Sn = arg max
ωi∈Ω

P (Xs = ωi|Y = y). (4)

Equation (4) shows that we obtain a labeling of each pixel at each level of the
quadtree, even if observations only lie on the finest level and even if there is missing
data.

color for each class :

Fig. 2. On the left picture, composed of a mosaic of 9 observations, the missing pixel
data, due to sampling adjustment problems, appear as a regular lattice of white
dots. The Markovian quadtree allow to reconstruct a segmentation map without
missing labels : the missing observations are labeled thanks to the Markovian a

priori model.

3 Reduction/Segmentation on the Quadtree
Analysis of multicomponent data sets is a very hard task, due to the curse of
dimensionality[Hughes, 1968]. Indeed, learning algorithms need a large diversity
of observations to cover the behavior of the studied process. Especially, in the
multidimensional case, the required number of samples grows quickly with the
dimension, so that the process behavior becomes rapidly untractable in practice.
This is the so-called Hughes phenomenon which corresponds to an important loss of
accuracy in the process statistics estimation as dimensionality grows (more precisely
the likelihood term in the quadtree). For example , for an observation size of H×W
pixels by D spectral bands, one more channel observed adds H × W additional
samples whereas the complexity deals with IR D+1. To deal with this problem,
one may carry out a space reduction step before classification [Landgrebe, 2003].
Fortunately, high dimensional observed data can often be described in a significantly
smaller number of dimension than the original due to redundancy in data cube
where neighboring bands are highly correlated. Many approaches were proposed
to solve such analysis task. All seek a mapping on a reduced dimension space by
maximizing a given criterion [Duda et al., 2001]. More graceful solution consists
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on combining reduction and classification by associating a generative model to the
observations within each class to compute the corresponding likelihood. Thus the
observations are modeled as a mixture of such generative models [Tipping and
Bishop, 1999, Lee et al., 2000]. In this paper we propose to use a Markovian a

priori associated with such generative models to regularize multidimensional pixel
classification. In the sequel this approach will be illustrated using the Probabilistic
Principal Component analysis (PPCA) generative model.

3.1 Probabilistic Principal Component analysis (PPCA)

The PPCA [Tipping and Bishop, 1999] is based on a latent variable model which
lies each D × 1 observed vector y to q × 1 latent vector t, q < D, as follows:

y = At + µ + ε (5)

where A is a D × q matrix, µ the observed data mean and ε is a random variable
following an Gaussian N (0, σ2I) noise, I being the identity matrix. Given t and
Eq. 5, the y probability distribution is :

P (y/t) = (2πσ2)
−D
2 exp{−

1

2σ2
‖y − W t− µ‖2}. (6)

Choosing Gaussian prior for t, i.e.; N (0, I), the marginal distribution of y is

P (y) = (2π)
−D
2 |C|

−1

2 exp{
−1

2
(y − µ)tC−1(y − µ)} (7)

with C = σ2I + AAt a D × D matrix. Using the Bayes rule, the a posteriori

probability of t is found to be [Tipping and Bishop, 1999] N (M−1At(y−µ), σ2M−1)
where M = σ2I − AtA.

The maximization of the data log-likelihood L =
P

s∈S0 ln{p(ys)} gives the
following parameter estimators :

µML =

P

s∈S0 ys

card(S0)
; σ2

ML =
1

D − q

D
X

j=q+1

λj ; AML = Uq(Λq − σ2I)
1
2 R. (8)

where λj are the eigenvalues of the data covariance matrix Σx = 1
card(S0)

P

s∈S0 (ys − µ)(ys − µ)t given in descending order (λ1 ≥ · · · ≥ λq), Λq is a
diagonal matrix of the q largest eigenvalues, Uq the matrix of the corresponding
eigenvectors, and R is an arbitrary orthogonal rotation matrix.

3.2 Regularized mixture of Probabilistic Principal Component
analyzers

A mixture of PPCA (MPPCA) was proposed in [Tipping and Bishop, 1999] to
model complex data structures as a combination of local PCA. For a K compo-
nent MPPCA, the observations are partitioned in K clusters (i.e; classes) each one
spanned by a local PPCA. Given this model, the distribution of the observations
is P (ys) =

PK
i=1 πiP (ys/xs = ωi). Note that in this formulation the prior is the

same for all s ∈ S0 and thus, any information about the neighborhood is taken
into account when classifying ys. We adapt this model by imposing a Marko-
vian constraints via the quadtree modelling. The observation distribution become
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P (ys) =
PK

i=1 P (xs = ωi)P (ys/xs = ωi), where Xs is drawn from a hierarchical
Markovian process (Eq. 1) and

P (ys/xs = ωi) = (2π)
−D
2 |Ci|

−1

2 exp{
−1

2
(y − µi)

tC−1
i (y − µi)}. (9)

The matrix Ci is obtained in analog manner to Eqs. 7 and 8 by eigen-decomposition

of the weighted covariance matrix Σi =
P

s∈S0 P (xs=ωi/Y )(ys−µ̂i)(ys−µ̂i)
t

P

s∈S0 P (xs=ωi/Y )
, where

µ̂i =
P

s∈S0 P (xs=ωi/Y )ys
P

s∈S0 P (xs=ωi/Y )
. The estimation of the a priori parameter remains the

same as in the classical quadtree. To test our approach, we generate 3 sets of 3
images (2 classes (geometric shape and background) with Gaussian distribution
(mean 120/120/128 and 136/136/128, standard deviation 16/16/16). Thus we ob-
tain 9 images to segment. The obtained 4-classes segmentation map shows clearly
the better behavior of our proposed approach towards MPPCA (cf. Fig. 3).
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Fig. 3. Segmentation map obtained with the MPPCA on 9 images (left) remains
noisy whereas the map obtained with the proposed technique (right) is well regu-
larized.

4 Wavelet domain for restoration and fusion tasks
Fusion of multiband images is of great interest in astronomy, allowing to obtain
an efficient summary of the whole multiband information in a single scene. Gener-
ally this task is more difficult for noisy observations. The wavelet domain is well
adapted both for fusion [Zhang and Blum, 1999] and denoising [D.L.Donoho and
Johnstone, 1994] tasks. Actually, wavelet coefficients measure local variations in
the image and the sharper the discontinuity, the larger the coefficients. Intensity
fluctuations corresponding to the noise, most of time considered as uncorrelated,
are most important at the finest resolution and related wavelet coefficients decrease
quickly as the scale increases. Real structures in the image will therefore lead to
larger wavelet coefficient values at these coarsest resolutions. A threshold can be
defined at each scale below which all the coefficients are discarded [D.L.Donoho and
Johnstone, 1994]. Note that the result of such analysis depends strongly both on
the wavelet used and on the thresholds chosen. Generally astronomical objects are
diffuse and exhibit smooth edges so isotropic wavelet transforms are well adapted
[Starck et al., 1998]. We use the pyramidal algorithm with one wavelet which is an
isotropic transform obtained by adapting the classical Laplacian pyramid [Starck
et al., 1998].

Few years ago [Crouse et al., 1998], an efficient Markovian modeling of wavelets
was introduced capturing interscale and spacial wavelet coefficient correlations. In
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this paper we use a more general Markovian framework modeling not only spatial
and interscale dependencies as the existent models but also interband correlation
for multiband image fusion and denoising. Moreover, the multidimensional likeli-
hood may be efficiently modeled using the copulas theory [Nelsen, 1998] allowing
us to use any kind of marginal densities with a given interband correlation. The

Fig. 4. Fusion-restoration algorithm illustrated for a bi-band image. A pyramidal
wavelet transform analyzes the two spectral bands (on the top). This leads to a
multiresolution pyramid of wavelet coefficients for each band, up to scale 4. Then,
all wavelet pyramids are combined to carry out two-class multiresolution Markovian
segmentation map (on the right). This segmentation map masks small coefficients
at different scales. The remainder coefficients are fused using an appropriate rule.
The result with the average of coarsest approximations feed an iterative reconstruc-
tion procedure to give a unique fused restored image.

proposed approach is summarized in Fig.4. For a multiband image Y with D
bands, a wavelet decomposition is carried out for each band b separately leading
to a multiresolution pyramids Wb, b = 1, · · · , D. These D pyramids are combined
in unique Multiband-Multiresolution Pyramid (MMP, cf. Fig. 4 and 5) W by con-
sidering details coefficients, W1

s∈Sj , · · · ,WD
s∈Sj , for space location s at scale j as a
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components of an unique vector Wj(s). The MMP is segmented in two-classes (i.e.;
∀s ∈ S : xs ∈ {0, 1}) using a vectorial hidden Markov quadtree (Fig.5) to separate
significant wavelet coefficients from those associated with the noise. The selection
relies now not only on the sole coefficient magnitude but also takes into account
its neighbors : in space, in scale and with wavelength. This classification scheme
produces a multiresolution binary mask highlighting significant wavelet coefficients
and removing the others, corresponding to the noise contribution. The fusion of
the cleaned wavelet coefficients is operated using the following rule :

∀s ∈ Sn : W fused
s =

PD
i=1 σn

i xsW
i
s

PD
i=1 σn

i xs

, (10)

σn
i being the standard deviation of the ith marginal of the likelihood associated

with class kept at scale n. The structure W fused does not correspond to a smooth
image since all non significant coefficients are put to zero before fusion. We seek
instead a smooth solution F̂ fused which minimizes ‖ (W fused−O(F̂ fused)) ‖ where
O is the wavelet transform operator. In practice we use the Van Cittert’s algorithm
[Starck et al., 1998] to obtain the final restored-fused image (see Fig. 6).

xsxs

xs+xs+

xr = xs−xr = xs−
WrWr

WsWs

rootroot

Fig. 5. Example of a dependency graph corresponding to a quadtree structure on
a 4× 4 lattice. White circles represent labels and black circles represent multiband
observations Ws, s ∈ S in the wavelet domain.

Conclusion
This paper summarizes some variations around Markovian quadtree model, in or-
der to show the efficiency of such a tool, to deal with unsupervised multiband
image analysis, for e.g., reduction, segmentation, restoration, fusion tasks. Our
motivations for using such a model are to provide fast computations and efficient
structures to process multispectral and multiresolution large observations. Indeed,
computer vision and astronomers communities need efficient tools to analyse and
interpret large data cubes : ground or on-board telescopes provide larger amount
of multispectral/multiresolution data cube every year, that have to be processed in
an efficient way.
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Fig. 6. Example of image fusion: from the left three simulated bands, the fusion
result is on the right. All objects appearing in the three bands are present in fused
image.

Annexe : Copulas for N-D likelihood computation
The basis of the copulas theory is Sklar’s Theorem [Nelsen, 1998] which asserts
the existence of a function C, called copula and defined on [0, 1]N , binding the
joint cumulative distribution function F (y1

s, · · · ,yN
s ) to the marginal cumula-

tive distribution functions F [1](y1
s), · · · , F [N](yN

s ) as follows : F (y1
s, · · · ,yN

s ) =
C(F [1](y1

s), · · · , F [N](yN
s )). If the marginals F [1], · · · , F [N] are continuous, then C

is unique. Moreover, if C is differentiable it is possible to define a copula density
as [Nelsen, 1998]:

f(y1
s, · · · ,yN

s ) = f [1](y1
s) × · · · × f [N](yN

s )×

c(F [1](y1
s), · · · , F [N](yN

s )) (11)

where f [j](yj
s) is the probability density function corresponding to F [j](yj

s) and
c = ∂C/(∂F [1], · · · , ∂F [N]) is the copula density. For multivariate Gaussian copula
CG, the copula density is given by [Nelsen, 1998]:

∀ t = (t1, · · · , tN )T ∈ IR N : cG(t) = |R|−
1
2 exp

»

−
t̃T (R−1 − I) t̃

2

–

(12)

where t̃ = (Φ−1(t1), · · · , Φ−1(tN))T with Φ(.) the standard Gaussian cumulative
distribution, R is the N × N correlation matrix of t̃ and I the same size identity
matrix. To model non-Gaussian multivariate densities, we use Eq. 11 with a
Gaussian copula density (Eq. 12) and Generalized Gaussian marginal densities
[Provost et al., 2003] each one characterized by three parameters namely the mean,
the standard deviation and the shape parameter. This modeling allows us to cover
Upper-Gaussian (shape parameter < 2), Gaussian (shape parameter = 2) and Sub-
Gaussian (shape parameter > 2) multidimensional densities. See [Nelsen, 1998] for
more details on copulas theory.
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