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Abstract. A number of Bayesian tracking models involve auxiliary discrete vari-
ables beside the main hidden state of interest. These discrete variables usually
follow a Markovian process and interact with the hidden state either via its evo-
lution model or via the observation process, or both. Examples of such auxiliary
variables include depth ordering for occlusion handling, switches between different
state dynamics, exemplar indices, etc. We consider here a general model that en-
compasses all these situations, and show how Bayesian filtering can be rigorously
conducted in this general setup. The resulting approach facilitates easy re-use of
existing tracking algorithms designed in the absence of the auxiliary process. In
particular we show how particle filters can be obtained based on sampling only in
the original state space instead of sampling in the augmented space, as it is usually
done. We finally demonstrate how this framework facilitates solutions to the criti-
cal problem of appearance and disappearance of targets, either upon scene entering
and exiting, or due to temporary occlusions. This is illustrated in the context of
color-based tracking with particle filters.
Keywords: Optimal Bayesian filter, Auxiliary discrete process, Particle filter, Vi-
sual tracking, Occlusion, Disappearance, Object detection.

1 Introduction and motivation

Visual tracking involves the detection and recursive localization of objects
within video frames. In a number of visual trackers, the state of interest,
e.g., size and location of the object, is associated with auxiliary discrete
variables. Such variables show up for instance within the state evolution
model, e.g., when different types of dynamics can occur (e.g., [North et al.,
2000]). More often, such auxiliary variables are introduced in the observation
model. It is the case for appearance models based on a set of key views (e.g.,
[Toyama and Blake, 2001],[Wu et al., 2003]) or silhouettes (e.g., [Gavrila,
2000] [Toyama and Blake, 2001]). Auxiliary variables are also used to handle
partial or total occlusions (e.g., [Nguyen et al., 2001]) or mutual occlusions
when jointly tracking multiple objects (e.g., [MacCormick and Blake, 1999]
[Wu et al., 2003]). Finally, auxiliary variables can be used to assess the
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presence of tracked objects in the scene (e.g., [Vermaak et al., 2002] [Isard and
MacCormick, 2001]). When a Bayesian tracking approach is used with such
augmented models, either specific filters are derived based on the detailed
form of the model at hand or the optimal filter of the joint model is simply
used. In the latter case, a practical implementation might be unnecessarily
costly due to the increased dimension of the joint space. Sequential Monte
Carlo approximations (SMC) in the joint space are for instance used in [Isard
and MacCormick, 2001] [Toyama and Blake, 2001] [Vermaak et al., 2002] [Wu
et al., 2003].

The first contribution of this paper is to propose a general and unified
framework to easily derive the optimal Bayesian filter for the augmented
model based on the one for a model with no (or frozen) auxiliary variables.
In practice, this allows the re-use of existing tracking architectures, with
a reasonable computational overhead in case the discrete auxiliary variable
only takes a small number of values. This approach allows us in particular
to introduce a generic SMC architecture that relies on sampling in the main
state space only. This is exposed in Section 2.

The problem of appearing and disappearing objects, whether it is upon
entering and exiting the scene, or upon getting occluded by another object, is
critical in visual tracking. As we mentioned above, the different forms of this
problem have already been addressed in the past based on auxiliary hidden
processes. The second contribution of this paper is to re-visit these problems
using our generic framework. The resulting filters are implemented using
the generic SMC architecture proposed in Section 2. To handle occlusions,
we introduce in Section 3 a binary visibility process that intervenes in the
observation model. In this case, our generic approach allows us to derive
a two-fold mixture filter that deal with temporary occlusions. In a similar
fashion, we address the problem of “birth” and “death” of objects, which is
crucial for multiple-object tracking, by introducing a binary existence process.
This process impacts both the state evolution and the data model. The
application of our approach leads in this case to a simple filter whose SMC
approximation does not need to draw samples for the existence variable.

2 Tracking with an auxiliary process

2.1 Modeling assumptions

For visual tracking, we are interested in recursively estimating the object
state xt ∈ R

nx , which specifies the position of the object in the image plane
and, possibly, other parameters such as its size and orientation, based on
a sequence of observations yt = (y1 · · ·yt). We assume in addition that a
discrete auxiliary variable at also has to be recursively inferred. This variable
takes its values in a set of cardinality M that we will denote by {0 · · ·M −1}
for convenience.
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The complete set of unknowns at time t is thus {xt, at}, for which we
assume the following Markovian prior

p(xt, at|xt−1, at−1) = p(xt|xt−1, at, at−1)p(at|at−1). (1)

In other words, the state follows a Markov chain with its kernel parame-
terized by the current and previous values of the auxiliary variable, and the
auxiliary process is a discrete Markov chain. Let A = (αji) be its M × M

transition matrix, with αji
.
= p(at = i|at−1 = j). For brevity, we will also

use the notation

pji(xt|xt−1)
.
= p(xt|xt−1, at = i, at−1 = j). (2)

As for the observation model, we assume in the normal way that the
image data at successive instances are independent conditional on the hidden
variables, i.e., p(yt|xt, at,y

t−1) = p(yt|xt, at). For notational convenience we
will denote

pi(yt|xt)
.
= p(yt|xt, at = i). (3)

2.2 Bayesian filter

For tracking, we are interested in recursively estimating the joint filtering
distribution

p(xt, at|y
t) = p(xt|at,y

t)p(at|y
t), (4)

from which the marginal filtering distribution can be deduced as

p(xt|y
t) =

∑
i

p(xt, at = i|yt) =
∑

i

pi(xt|y
t)ξi,t, (5)

where we used the notation

pi(xt|y
t)

.
= p(xt|at = i,yt) and ξi,t

.
= p(at = i|yt). (6)

Similar to our previous notation, we will now use the distribution subscript
i to indicate conditioning with respect to the current auxiliary variable set
to i, and the distribution subscript ji for conditioning on i and j being the
current and previous values of the auxiliary variable.

We will first show how to compute the M conditional state posteriors
pi(xt|y

t). First note that

pi(xt|y
t) =

pi(xt,yt|y
t−1)

pi(yt|yt−1)
. (7)

The numerator can be expressed as

pi(xt,yt|y
t−1) =

∑
j

pji(xt,yt|y
t−1)p(at−1 = j|at = i,yt−1), (8)
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with

pji(xt,yt|y
t−1) = pi(yt|xt)pji(xt|y

t−1)

= pi(yt|xt)

∫
pji(xt|xt−1)pj(xt−1|y

t−1)dxt−1,(9)

p(at−1 = j|at = i,yt−1)
.
= α̃ji,t

∝ p(at = i|at−1 = j,yt−1)p(at−1 = j|yt−1). (10)

Based on the conditional independence structure of the model, one can show
that the first term on the right hand side is independent of yt−1. We thus
obtain, after normalization,

α̃ji,t =
αjiξj,t−1∑
k αkiξk,t−1

. (11)

The predictive likelihood in the denominator of (7) is

pi(yt|y
t−1) =

∑
j

α̃ji,t

∫
pji(xt,yt|y

t−1)dxt. (12)

The filtering distribution in (5) is then a mixture of the M conditional filtering
distributions, i.e.,

pi(xt|y
t) =

∑
j α̃ji,tpji(xt,yt|y

t−1)

pi(yt|yt−1)
, (13)

each of which is obtained by combining M optimal Bayesian filters to compute
(9) and (12).

We still need the marginal posterior of the auxiliary variable, p(at|y
t), to

compute the weights ξi,t in the mixture of (5). We have

ξi,t ∝ pi(yt|y
t−1)

∑
j

p(at = i|at−1 = j,yt−1)ξj,t−1. (14)

Since the first factor in the sum is independent of yt−1, we finally obtain,
after normalization

ξi,t =
pi(yt|y

t−1)
∑

j αjiξj,t−1∑
k pk(yt|yt−1)

∑
j αjkξj,t−1

. (15)

Let us summarize the operations at time t for the generic algorithm:

• Input: pi(xt−1|y
t−1) and (ξi,t−1) for i = 0 · · ·M − 1.

1. Compute α̃ji,t as in (11), for i = 0 · · ·M − 1.
2. Compute distributions pji(xt,yt|y

t−1) as in (9), for i, j = 0 · · ·M − 1.
3. Compute distributions pi(yt|y

t−1) as in (12), for i = 0 · · ·M − 1.
4. Compute filtering distributions pi(xt|y

t) = as in (13), for i = 0 · · ·M −1.
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5. Compute posterior distribution (ξi,t)i=0···M−1 of auxiliary variable as in
(15).

• Output: distributions pi(xt|y
t) and weights ξi,t.

At each time step, M2 “elementary” filtering operations are required (step
2), one per possible occurrence of the pairing (at, at−1). In practice, not
all M2 values may be admissible, in which case the number of elementary
filtering operations at each time step is reduced accordingly. As we will
see, specificities of the model under consideration might also permit further
computational savings.

The framework above is entirely general, both in terms of model ingredi-
ents (evolution and observation processes) and in terms of implementation.
Regarding the latter, all existing techniques, whether exact or approximate,
can be accommodated. If, for example, the filtering distributions pi(xt|y

t) are
to be represented by Gaussian mixtures, the mixtures components can be ob-
tained by the Kalman filter for linear Gaussian models, and by the extended
or unscented Kalman filters for non-linear and/or non-Gaussian models. For
models of the latter kind it may sometimes be beneficial to adopt a particle
representation, and use sequential importance sampling techniques to update
the filtering distribution. This is especially true for the highly non-linear and
multi-modal models used in visual tracking, hence the success of SMC tech-
niques in the computer vision community. It is this type of implementation
that we now consider.

2.3 SMC implementation

For a general SMC implementation, we will consider proposal distributions
of the form qji(xt|xt−1,yt)

.
= q(xt|xt−1, at = i, at−1 = j,yt). Based on these

proposals, different SMC architectures can be designed to approximate the
generic algorithm of the previous section. We propose here an architecture
that is based on systematic resampling. Assuming that each conditional
posterior distribution pi(xt−1|y

t−1) at time t − 1 is approximated by a set

(s
(n)
i,t−1)n=1···N of N equally weighted particles, we simply replace steps 2, 3

and 4 in the generic algorithm by:

2. For j = 0 · · ·M − 1, for i = 0 · · ·M − 1

2a. Sample N particles s̃
(n)
ji,tsimqji(xt|s

(n)
j,t−1,yt).

2b. Compute the normalized predictive weights

π
(n)
ji,t ∝

pji(s̃
(n)
ji,t|s

(n)
j,t−1)

qji(s̃
(n)
ji,t|s

(n)
j,t−1),yt

with
∑

n

π
(n)
ji,t = 1. (16)

3. Approximate the M predictive data likelihoods by

pi(yt|y
t−1) ≈

∑
j

∑
n

w
(n)
ji,t, (17)
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where, for i, j = 0 · · ·M − 1,

w
(n)
ji,t

.
= α̃ji,tpi(yt|s̃

(n)
ji,t)π

(n)
ji,t. (18)

4. For i = 0 · · ·M − 1, draw N particles s
(n)
i,t with replacement from the

weighted set (s̃
(n)
ji,t, pi(yt|y

t−1)−1w
(n)
ji,t)j,n of M × N particles.

Steps 1 and 5 remain unchanged. At each instant t, posterior expectations
can be approximated using the final particle sets. In particular,

E[xt|at = i,yt] ≈ x̂i,t
.
=

1

N

∑
n

s
(n)
i,t , E[xt|y

t] ≈ x̂t
.
=

∑
i

ξi,tx̂i,t. (19)

If the proposal distribution does not depend on at = i, then step 2a can

be performed M times instead of M2 times, providing particles sets (s̃
(n)
j,t )n

to be used in place of (s̃
(n)
ji,t)n in the remainder of the algorithm.

3 Appearance and disappearance

Most tracking algorithms assume the number of objects of interest to be
constant in the sequence. However, in most cases objects of interest enter
and exit the scene at arbitrary times. In addition, they can also disappear
temporarily behind other occluding objects. In the latter case of occlusion,
tracking should be continued blindly in the hope of locking back onto the ob-
jects when they re-appear. An object entering or exiting the scene should in
contrast result in initiating or terminating tracking, respectively. In any case,
these appearance and disappearance events, whether they are temporary or
definitive, are themselves uncertain events. The associated concepts of “exis-
tence” and “visibility” should thus be treated jointly with the other unknowns
within a probabilistic framework that can account for all the expected am-
biguities. Exploiting the generic approach presented in the previous section,
we propose to achieve this using two auxiliary binary processes. Although
these two processes can be used jointly, we introduce them separately for the
sake of clarity.

3.1 Visibility process

Explicit introduction of an occlusion process within the Bayesian tracking
framework was proposed in [MacCormick and Blake, 1999] and [Wu et al.,
2003]. Both works, however, rely on specific modeling assumption (contour-
based tracking in the former, luminance exemplars in the latter), and specific
implementations (particle filter with partitioned importance sampling in the
former vanilla bootstrap particle filter in the latter). In contrast, our ap-
proach relies on generic modeling assumptions and is independent of a spe-
cific implementation strategy, so that existing tracking architectures can be
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re-used. The occlusion modeling we propose can thus be used in conjunc-
tion with any Bayesian visual tracking technique, based for instance on the
Kalman filter or one of its variants. In addition, using it within the SMC
architecture of Section 2 allows restriction of the sampling to the object state
space only.

Considering here only the case of complete occlusion, we introduce a
binary visibility variable vt that indicates whether the object is visible (vt =
1) or not (vt = 0) in the image at time t. The Markov chain prior on
this binary variable is completely defined by the occlusion and desocclusion
probabilities, α10 and α01. The state evolution model is independent of the
visibility variable, i.e.,

pji(xt|xt−1) = p(xt|xt−1). (20)

Two data models,

p(yt|xt, vt = 0) = p0(yt) and p(yt|xt, vt = 1) = p1(yt|xt), (21)

will have to be specified, depending on whether the object of interest is visible
in the image or not. In the former case, the likelihood is independent of the
state value. Since our experiments are conducted in the context of color-
based tracking we consider a simple observation model related to the more
complex ones proposed in [Isard and MacCormick, 2001] and [Vermaak et al.,
2002]. Pixel-wise location independent background and foreground models,
g0 and g1, respectively, are specified over the selected color space. Assuming
conditional independence of color measures over a sub-grid S of pixels, we
obtain

p0(yt) =
∏
s∈S

g0(ys,t) and p1(yt|xt) =
∏

s∈R(xt)

g1(ys,t)
∏

s∈R̄(xt)

g0(ys,t), (22)

where R(xt) is the image region associated with an object parameterized by
the state xt, and ys,t is the color at pixel s in frame t.

For this dynamic model, the SMC architecture of Section 2 can be sim-
plified. Indeed, the independence of the state evolution with respect to the
auxiliary variables allows step 2a to be performed only M times, and suggests
the use of a unique proposal. A simple and classical choice is to take the state
dynamics (20) as the proposal [Isard and Blake, 1996]. We will adopt this
approach here, while bearing in mind that any data-based proposal, includ-
ing the optimal one [Doucet et al., 2000] in the rare cases that it is accessible,
can be used in our generic framework.

Fig. 1 shows results obtained on a sequence where a walking person is
successfully tracked despite a succession of severe and total occlusions caused
by trees in the foreground. The tracking is initialized manually on the red
top of the person. The initialization also provides the reference foreground
model g1, defined as a 5× 5× 5 joint histogram in the RGB color space. The
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histogram for the reference background model g0 is also obtained in the first
frame based on the image complement of the initial selection. The unknown
state xt comprises the position in the image plane (nx = 2) and its dynam-
ics (20) is taken to be a random walk with independent Gaussian noise with
variance 102 on each component. The parameters of the Markov chain on the
visibility process are α01 = 0.8 and α10 = 0.1, and its initial distribution is
given by p(v0 = 1) = 0.8. We use N = 200 particles for the SMC implemen-
tation. The main quantities of interest are the marginal filtering distributions
(5), which inform on the localization of the object of interest regardless of
whether it is visible or not. We display the MC approximations of the state
expectations x̂t relative to these distributions in Fig. 1. The algorithm also
recursively estimates the marginal visibility posterior p(vt = 1|yt). The time
evolution of this quantity for the pedestrian sequence is plotted in Fig. 2. It
correctly drops to zero for each complete occlusion of the tracked person.

5 7 11 19

39 41 74 91

Fig. 1. Tracking under occlusions. The color-based tracker is initialized on the
trousers of Lola (from movie “Run, Lola, run”) who runs in the street. The rapid
succession of partial, large or complete occlusions caused by cars, poles and mailbox
is successfully handled thanks to the explicit modeling of visibility changes. In each
of the displayed frames, the box corresponds to x̂t and its color is changed from
yellow to red when ξ1,t drops below 0.5.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Fig. 2. Posterior visibility probability, ξ1,t = p(vt = 1|yt), plotted against
time for the example in Fig. 1. Occlusions and desocclusions make respectively the
visibility probability drop, possibly down to zero, and increase back to unity.
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3.2 Existence process

Using a Markovian binary variable to indicate presence in the scene is pro-
posed in [Vermaak et al., 2002] to determine in a probabilistic fashion the
beginning and end of the track for a single object. We adopt the same model
here. However, sequential Monte Carlo is the only inference mechanism con-
sidered in [Vermaak et al., 2002], and it is conducted in the augmented state
space. By comparison, our generic framework can be easily used with any
Bayesian filtering technique and its SMC version implies sampling only in
the object state space.

Following [Vermaak et al., 2002], we introduce a binary existence variable
et that indicates whether the object of interest is present (et = 1) or not
(et = 0) in the scene at time t. The Markov chain prior on this binary
variable is completely defined by the death and birth probabilities, α10 and
α01. Conditional on the existence variables the state dynamics is specified
by

p00(xt|xt−1) = p10(xt|xt−1) = δu(xt) (23)

p01(xt|xt−1) = pinit(xt) (24)

p11(xt|xt−1) = pdyn(xt|xt−1), (25)

where u is the consuming state that corresponds to the object not existing,
pinit is the initial state distribution, and pdyn is the object dynamic model.
From the data model point of view, the existence process is similar to the
visibility process.

Due to the component (23) of the evolution model, non-existence et = 0
deterministically forces xt into fictitious state u. This is carried over in the
posterior model, yielding

p0(xt|y
t) = δu(xt). (26)

As a consequence, the algorithm only needs to recursively estimate the condi-
tional filtering distribution for the case of the object existing, i.e., p1(xt|y

t).
Thus, within the SMC framework, only two proposal distributions, q01 and
q11, are required, instead of four. As in the previous section, we only consider
the simple case where these distributions coincide with their counterparts in
the evolution model.

In the following experiment, the observation model is defined as in the
previous section. Yet again the state comprises the object location in the
image plane, and in the state evolution model (24)-(25), pinit and pdyn are
respectively chosen as the uniform distribution over positions in the image
plane and a random walk with independent Gaussian noise. The variance of
the noise is 152 for each component for the car race sequence in Fig. 3. Also,
the state distribution at time t = 0 coincides with pinit. Hence, contrary to the
previous experiment, the tracker is not initialized manually at the beginning
of the sequence (the reference foreground model is picked on an arbitrary red
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8 10 18

23 24 25

46 56 62

Fig. 3. Detection and tracking. A reference color model is initialized before-
hand on one instance of a red car. The algorithm then successfully detects red
cars that enter the scene, tracks them as long as they remain in view, and finally
determines automatically when they disappear. In each of the displayed frames
x̂1,t is displayed, provided that ξ1,t exceeds 0.2 (in blue if it is greater than 0.8 and
in yellow otherwise).

car in a different part of the video). For this experiment, the death and birth
probabilities are respectively set to α01 = 0.1 and α10 = 0.1, and the initial
existence distribution is given by p(e0 = 1) = 0.1. Finally, N = 50 particles
were sufficient to detect the entrance and exit of red cars in the field of view
and to track them while present in the scene. Entrance and exit events are
clearly identified by the variations in the posterior existence probability ξ1,t,
as shown in Fig. 4. In this example, a single tracker successively locks on
to different cars, each one appearing in the image after the previous one
has been successfully detected and tracked until disappearance. In practice,
distinction between different tracked objects would be necessary, especially
if they are likely to be present simultaneously in the image. In this context,
the information carried by the existence probabilities would facilitate the
design of a mechanism that effectively initiates different trackers for each
“detected” object and subsequently discards each tracker whose associated
existence probability ξ1,t falls below a threshold.

4 Conclusion

In this paper we introduced a generic Bayesian filtering tool to perform track-
ing in the presence of a certain class of discrete auxiliary processes. The
approach places no restriction on the ingredients of the evolution and ob-
servation models and on the selected type of filter (Kalman filter and its
variants, particle filters). Hence the proposed framework allows re-use of ex-
isting architectures on a variety of tracking problems where the introduction
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0.5

1

Fig. 4. Posterior existence probability, ξ1,t = p(et = 1|yt), against time for
the example in Fig. 3. When the object of interest enters the scene the existence
probability quickly ramps up to one, and falls back down to zero when it exits the
field of view.

of auxiliary discrete variables is useful. We demonstrated in particular how
the technique can be applied in visual tracking to handle occlusions and ob-
ject appearance/disappearance via visibility and existence binary processes.
Our generic frameworkwould now allow the combination of these two binary
processes within a single tracking setup.
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