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Abstract. The problem concerned here is the estimation of ergodic finite semi-
Markov processes from data observed by considering K independent censored sam-
ple paths with application in the reliability.

1 Introduction

Semi-Markov modeling, as a generalization of Markov modeling, is a an active area
in research. See, e.g., [Alvarez, 2005]-[Voelkel and Cronwley, 1984].

In our previous work [Ouhbi and Limnios, 1999], we have considered one tra-
jectory in the time interval [0, T ], and given the estimators and their asymptotic
properties, as T → ∞. In the present work, we consider K trajectories in the
time interval [0, T ], generated by K independent semi-Markov processes having the
same semi-Markov kernel Q and initial distribution α. We obtain asymptotic prop-
erties of the estimators when K → ∞. In this case the time T is finite and fixed.
This type of observation can be viewed as a generalization of the fixed (or type I)
censoring of a single failure time. Our method, as in our previous works [Ouhbi
and Limnios, 1999, Ouhbi and Limnios, 2003, Ouhbi and Limnios, 2001], consists
in obtaining estimators of the semi-Markov kernel, by using a maximum likelihood
estimator (MLE) of the hazard rate function of transitions between states, and then
considering estimators of other quantities, as the semi-Markov transition function,
Markov renewal function, and reliability functions as statistical functionals of the
semi-Markov kernel via analytic explicit formula.

2 Estimation of the hazard rate function of transitions

We will consider in this paper a semi-Markov process with a finite state space,
E = {1, 2, ..., s} say, with irreducible embedded Markov chain and finite sojourn
time in all states [Limnios and Oprişan, 2001].

In this section, we will derive and study the maximum likelihood estimator of
the hazard rate functions of piecewise constant type estimator (PEXE).
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Let us suppose that the semi-Markov kernel Q is absolutely continuous with re-
spect to the Lebesgue measure on R+ and denote by q its Radon-Nikodym deriva-
tive, that is, for any i, j ∈ E,

Qij(dt)

dt
=: qij(t). (1)

So, we can write also qij(t) = P (i, j)fij(t), where fij is the density function of the
distribution Fij .

For any i and j in E, let us define the hazard rate function of transition distri-
butions between states, λij(t), t ≥ 0, of a semi-Markov kernel by

λij(t) =

(
qij (t)

1−Hi(t)
if P (i, j) > 0 and Hi(t) < 1,

0 otherwise.
(2)

Let us also define the cumulative hazard rate from state i to state j at time t
by Λij(t) =

R t

0
λij(u)du and the total cumulative hazard rate of state i at time t

by Λi(t) = Σj∈EΛij(t). We have also

Qij(t) =

Z t

0

exp[−Λi(u)]λij(u)du. (3)

Let us consider now a family of K independent E-valued Markov renewal pro-
cesses (Jr

n, S
r
n, n ≥ 0), 1 ≤ r ≤ K, defined by the same semi-Markov kernel Q, and

the initial distribution α, that is, for any r, 1 ≤ r ≤ K,

Qij(t) := P(Jr
n+1 = j, Sr

n+1 − Sr
n ≤ t | Jr

n = i), i, j ∈ E, t ∈ R+, n ∈ N,

α(i) = P(Jr
0 = i), i ∈ E.

For any r, let us denote by Nr
i (t),Nr

ij(t),N
r(t), ... the corresponding quantities

Ni(t), Nij(t), N(t), ..., and define further

Ni(t,K) :=
KX

r=1

Nr
i (t), Nij(t,K) :=

KX

r=1

Nr
ij(t), N(t) :=

KX

r=1

Nr(t). (4)

If t = T fixed, then we will note simply Ni, Nij , ....
The maximum likelihood estimator of the hazard rate functions will be

based upon the observation of the above K independent MRP {(Jr, Sr) =
[(Jr

n, S
r
n)n≥0], 1 ≤ r ≤ K}.

We assume hereafter that we observe each MRPs over the period of time [0, T ]
for some finite and fixed T . A sample or history for the r-th MRP is given by

Hr(K) = (Jr
0 , J

r
1 , ..., J

r
Nr(T ),X

r
1 ,X

r
2 , ..., X

r
Nr(T ), U

r
T ), (5)

where Ur
T = T − Sr

Nr(T ) is the backward recurrence time.
The log-likelihood function associated to (Hr(T ), 1 ≤ r ≤ K) is:

l(K)=logL(K)=

KX

r=1

nNr(T )X

l=1

[log λJr
l−1

,Jr
l
(Xr

l ) − ΛJr
l−1

(Xr
l )] − ΛJr

Nr(T )
(Ur

T )
o
. (6)

In the sequel of this paper, we will approximate the hazard rate function λij(t)
by the piecewise constant function λ∗

ij(t) defined by λ∗
ij(t) = λij(vk) = λijk ∈ R+
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for t ∈ (vk−1, vk] = Ik, 1 ≤ k ≤ M , where (vk)0≤k≤M is a regular subdivision of
[0, T ], that is, vk = k∆, 0 ≤ k ≤ M , M = M(K), with step ∆ := T/M , such that,
as K → ∞, ∆→ 0, and K∆→ ∞.

Hence,

λ∗
ij(t) =

MX

k=1

λijk1(vk−1,vk ](t), (7)

where 1(vk−1,vk](t) is equal to 1 if t ∈ (vk−1, vk], and 0 otherwise. We get

l(K) =
X

i,j∈E

MX

k=1

(dijk log λijk − λijkνik), (8)

where dijk =

KX

r=1

Nr(T )X

l=1

1{Jr
l−1

=i,Jr
l
=j,Xr

l
∈Ik} is the number of transitions from state

i to state j for which the observed sojourn time in state i belongs to Ik, and νik is
the trace of the sojourn time in state i on the interval time Ik, given for N(T ) ≥ 1.
The r.v. νik can be represented by the sum of two r.v. as follows

νik := ν1
ik + ν2

ik,

where ν1
ik is the trace of the sojourn time on the interval Ik, of the sojourn times

in state i, and ν2
ik is the trace of the cumulated censored time T greater than vk,

in state i.
So, the maximum likelihood estimator bλijk of λijk is given by:

bλijk =


dijk/νik if νik > 0
0 otherwise.

Thus, the estimator bλij(t,K) of λij(t) is then given by

bλij(t,K) =
MX

k=1

bλijk1(vk−1,vk](t). (9)

Let us also define

bΛi(t,K) =
X

j∈E

Z t

0

bλij(u,K)du, bΛik = bΛi(vk,K) = ∆
X

j∈E

kX

l=1

bλijl, (10)

and

νl
i(t) =

MX

k=1

νl
ik1(vk−1,vk](t), l = 1, 2.

3 Maximum likelihood and empirical estimators

of the semi-Markov kernel

Let us define estimators of the semi-Markov kernel by putting estimators (9) to
(10), as follows

bQij(t,K) := ∆
X

{k:0≤vk≤t}

e−
bΛik bλijk.
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Consider now the empirical kernel function defined by

eQij(t,K) :=
1

Ni

KX

r=1

NrX

l=1

1{Jr
l−1

=i,Jr
l
=j,Xr

l
≤t}, (11)

and the empirical density kernel given by:

eqij(t,K) =
eQij(vk,K) − eQij(vk−1,K)

∆
, if t ∈ Ik.

Define also the estimator eHi(t,K) by

eHi(t,K) :=
X

j∈E

eQij(t,K). (12)

We define a function Gi(·,K), for t ∈ Ik, 1 ≤ k ≤ M , by

Gi(t,K) :=
KX

r=1

n NrX

l=1

Xr
l − vk−1

Ni∆
1{Jr

l−1
=i,Xr

l
∈Ik,Xr

l
≥t}+

Ur
T − vk−1

Ni∆
1{Jr

Nr(T )
=i,Ur

T
∈Ik}

o
.

Now, let us write estimator (9), as follows

bλij(t,K) =
eqij(vk,K)

1 − { eHi(vk,K) −Gi(vk,K)} + hr
i (t,K)

, if t ∈ Ik,

where

hr
i (t,K) :=

ν2
ik

Ni∆
=

1

Ni

KX

r=1

1{Jr
Nr(T )

=i,Ur
T

>vk}.

In order to obtain a consistent estimator, we will neglect the term hr
i (t,K)

from the denominator of estimator bλij(t,K), and obtain a new modified estimator

denoted by bλ0
ij(t,K). That is,

bλ0
ij(t,K) =

eqij(vk,K)

1 − { eHi(vk,K) −Gi(vk, K)}
, if t ∈ Ik. (13)

Denote the corresponding cumulative hazard rates estimator by bΛ0
i (t), and bΛ0

ij(t).

Lemma 1 The estimator bλ0
ij(t,K), is a consistent estimator of λij(t), as K → ∞.

Since hr
i (t,K) converges to a positive quantity, it is clear the estimator bλij(t,K)

is not consistent.
In the sequel of this paper, we will consider only the estimator bλ0

ij(t,K). So,

the MLE bQij(t,K) in (11) is obtained by using this estimator. In the remaining
of this section we will study the asymptotic properties of the semi-Markov kernel
estimator given by (11).

Theorem 1 The empirical estimator of the semi-Markov kernel is uniformly

strongly consistent, in the sense that, as K → ∞,

max
i,j

sup
t∈[0,T ]

˛̨
˛ eQij(t,K) −Qij(t)

˛̨
˛ a.s.
−→ 0.
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We will prove now that the semi-Markov kernel estimator, obtained from modi-
fied PEXE of the hazard rate function bλ0

ij(t,K), is asymptotically uniformly equiv-

alent to the empirical estimator eQij(t,K).

Lemma 2 Let i and j be any two fixed states. Then we have, for any t ∈ [0, T ],

bQij(t,K) − eQij(t,K) = O(K−1), as K → ∞.

¿From the previous lemma, we conclude that the estimator of the semi-Markov
kernel is asymptotically uniformly a.s. equivalent to the empirical estimator of the
semi-Markov kernel for which we will prove the uniform strong consistency and
derive a central limit theorem.

Corollary 1 The estimator of the semi-Markov kernel bQij(t,K) is uniformly

strongly consistent, that is, when K tends to infinity,

max
i,j

sup
t∈[0,T ]

˛̨
˛ bQij(t,K) −Qij(t)

˛̨
˛ a.s.
−→ 0.

Theorem 2 For any i, j ∈ E and t ∈ [0, T ] fixed, K1/2[ bQij(t,K) − Qij(t)]
converges in distribution, as K → ∞, to a zero mean normal random variable with

variance Qij(t)(1 −Qij(t))[(αψ)(T )1].

4 The estimator of the reliability function and its

asymptotic properties

After having outlined the problem of estimating the semi-Markov transition matrix,
it is appropriate to give some concrete applications of these processes as models of
evolution of the reliability function of some system.

Let the state space, E, be partitioned into two sets, U = {1, ..., r} the patient
is in good health and D = {r + 1, ..., s} the patient is ill due to some causes or
the component is failed and under repair. Reliability models whose state space is
partitioned in the above manner will be considered here. As indicated above, it
is of interest to estimate the distribution function of the waiting time to hit down
states (failure).

We focus on the estimation of the reliability function for a semi-Markov process
which describes the stochastic evolution of system. The general definition of the
reliability function in the case of semi-Markov processes is

R(t) = P(Zu ∈ U, ∀ u ≤ t).

The reliability function R(t) is given by:

R(t) =
X

i∈U

α(i)Ri(t), (14)

where Ri(t) is the conditional reliability function, that the hitting time to D, start-
ing from a state i ∈ U , is greater than the time t. It is easy to show, by a renewal
argument, that Ri(t) satisfies the following Markov renewal equation

Ri(t) −
X

i∈U

Z t

0

Rj(t− u)Qij(du) = 1 −Hi(t), i ∈ U.
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The solution of this MRE, see Section 2, together with (14), in matrix form, gives

R(t) = α0(I −Q0(t))
(−1) ∗ (I −H0(t))1, (15)

where 1 = (1, ..., 1)> is an r-dimensional column vector. Index 0 means restriction
for matrices on U × U , and for vectors on U .

We will give an estimator of the reliability function of semi-Markov processes
and prove its uniform strong consistency and weak convergence properties as K →
∞.

Let bQ be the modified MLE of PEXE type of the transition probability of the
semi-Markov kernel Q. Then we propose the following estimator for the reliability
function

bR(t,K) = bα0(I − bQ0(t,K))(−1) ∗ (I − bH0(t,K))1, (16)

and we will prove now its uniform strong consistency and central limit theorems.

Theorem 3 The estimator of the the reliability function of the semi-Markov

process is uniformly strongly consistent in the sense that,

sup
t∈[0,T ]

˛̨
˛ bR(t,K) −R(t)

˛̨
˛ a.s.
−→ 0, K → ∞.

Set

Bij(t) :=
X

n∈U

X

k∈U

α(n)Bnijk ∗ (1 −Hk)(t).

Theorem 4 For any fixed t ∈ [0, T ], the r.v. K1/2[ bR(t,K) − R(t)] converges in

distribution to a zero mean normal random variable with variance

σ2
S(t) :=

X

i∈U

X

j∈U

µii{[Bij − (αψ)i]
2 ∗Qij(t) − [(Bij − (αψ)i) ∗Qij(t)]

2}.

5 Numerical Application

In this section we present a numerical example for a three state semi-Markov process
for which we will consider K = 50 censored trajectories. The time interval is [0, T ],
with T = 1000.

The conditional transition functions Fij(t) are the following F12(t), and F31(t)
are exponential with parameters respectively 0.1 and 0.2, and F21(t) , F23(t) are
Weibull with parameters respectively (0.3, 2), and (0.1, 2) (scale and shape param-
eter). The other functions are identically 0.

The transition probabilities P (2, 1) and P (2, 3) are:

P (2, 1) = 1 − P (2, 3) =

Z ∞

0

[1 − F23(t)]dF23(t).

The results obtained here are illustrated in figure 1. These results concern the
reliability function.
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Fig. 1. Reliability estimation
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