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Abstract. In this paper we present a diffusion approximation algorithm for a
centered semi-Markov random walks in the series scheme with the small parameter
series ε → 0, (ε > 0).

1 The semi-Markov random walk

The semi-Markov random walk (SMRW) is defined on the real line R = (−∞,+∞)
by the superposition of two independent renewal processes of the i.i.d. sequences
of nonnegative random variables α±

k , k ≥ 1, and the two sequences of nonnegative
independent i.i.d. random variables β±

k , k ≥ 1, as follows

ζ(t) = u +

ν+(t)X

k=1

β+
k −

ν−(t)X

k=1

β−
k , t ≥ 0. (1)

The renewal process are

ν±(t) := max

(
n :

nX

k=1

α±
k ≤ t

)
, t ≥ 0. (2)

The distribution functions

P±(t) = P{α±
k ≤ t}, G±(u) = P{β±

k ≤ u} (3)

are given.
SMRW (1) was investigated in average, diffusion and Poisson approximation

schemes under distinct assumption of semi-continuity [Korolyuk and Korolyuk,
1999], [Korolyuk, 1997], [Korolyuk, 1999], etc. This kind of processes are inter-
esting for various applied problems. The number of customs in the queue system is
described by (1) with the given distribution function of arrival and service time and
with . The process (1) can be considered as a mathematical model of risk process
with arbitrary distribution of interval between moments of payment of claims and
the premium income.

In this paper we discuss a centered normalized in diffusion approximation
scheme (see process (12) below).
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2 The superposition of two renewal processes

Relation (2) can be described by the counting process

ν(t) = ν+(t) + ν−(t), t ≥ 0, (4)

for the Markov renewal process xn, τn, n ≥ 0, on the phase space E = E+ ∪
E−, E± = {±, x > 0} by the formula of sojourn times θn+1 := τn+1 − τn, n ≥ 0
[Korolyuk and Korolyuk, 1999]:

θ±
x = α± ∧ x. (5)

The transition probabilities of the embedded Markov chain (EMC)
xn, θn, n ≥ 0, is defined by the matrix [Korolyuk and Limnios, (2004b]

P (x, dy) =

„
P+(x − dy) P+(x + dy)
P−(x + dy) P−(x − dy)

«
.

The stationary distribution of the EMC has the density

ρ±(t) = P∓(t)/a, a := a+ + a−, a± := Eα±. (7)

As usual, P±(t) := 1 − P±(t).
The embedded SMRW ζn := ζ(τn), n ≥ 0, is defined by the relations

ζn+1 = ζn + βn+1, n ≥ 0,
βn+1 := β+

n+1I(xn+1 ∈ E+) − β−
n+1I(xn+1 ∈ E−),

(8)

where, as usual, I(A) is the indicator of a random event A.
The SMRW (1) can be defined as follows: ζ(t) = ζν(t), t ≥ 0. It is worth noticing

that the average drift per unit time of the SMRW (1) is defined by the value

b = b+/a+ − b−/a−, b± := Eβ±. (9)

The average algorithm for SMRW (1) is realized in the following series scheme
with the small series parameter ε → 0 (ε > 0):

ζε(t) = u + ε

ν+(t/ε)X

k=1

β+
k − ε

ν−(t/ε)X

k=1

β−
k , t ≥ 0. (10)

Under the condition b 6= 0, the weak convergence takes place:

ζε(t) ⇒ ζ0(t) = u + bt, ε → 0. (11)

3 The algorithm of diffusion approximation

The centered SMRW in the series scheme is considered as follows:

ζε(t) = u + ε

2
4

ν+(t/ε2)X

k=1

β+
k − ε

ν−(t/ε2)X

k=1

β−
k

3
5

+

− bτ (t/ε2). (12)
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The renewal process τ (t) := τν(t), t ≥ 0, defines the last renewal moment before
time t.

Introduce the random variables

γn := βn − bθn, n ≥ 1, (13)

it is worth noticing that, for any x ∈ E±,

b±(x) := E[βn+1|xn = x] = ±[b±P±(x) − b∓P±(x)] (14)

and
eb±(x) := E[γn+1|xn = x] = b±(x) − ba±(x), (15)

where

a±(x) := E[θn+1|xn = x] =

Z ∞

0

P±(t)dt. (16)

The centered SMRW (12) can be represented in the following form:

ζε(t) = u + ε

ν(t/ε2)X

n=1

γn, t ≥ 0. (17)

Theorem 1 Let b 6= 0 defined in (9) and the third moments E[β±
n ]3 < ∞. Then

the weak convergence

ζε(t) ⇒ ζ0(t) = u + σw(t), ε → 0 (18)

takes place. The variance σ2 of the standard Wiener process w(t) is calculated by
the formulae:

σ2 = σ2
0 + σ2

1 − σ2
2 ,

σ2
0 = q

R ∞

0
[ρ+(x)C+(x) + ρ−(x)C−(x)]dx,

σ2
1 = 2

R ∞

0
[π+(x)h+(x) + π−(x)h−(x)]dx,

σ2
2 = 2q

R ∞

0
[ρ+(x)eb2

+(x) + ρ−(x)eb2
−(x)]dx.

(19)

Here, by definition:

C± := E[γ2
n+1|xn = x],

h± := −eb0
±(x)R±

0
eb0
±(x),eb0

±(x) := eb±/a±(x),

π±(x) := qρ±(x)a±(x), q := 1/a+ + 1/a−,

where x ∈ E±.

The potential operator R±
0 is defined for the generator of the Markov kernel

Q = q(x)[P − I ].

Remark. It is worth noticing that σ2
1 − σ2

2 ≥ 0.
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4 Scheme of Proof

The construction of the algorithm of diffusion approximation is realized by the
scheme introduced in our papers [Korolyuk and Limnios, 2004a] and [Korolyuk
and Limnios, (2004b].

The compensating operator Lε of the extended Markov renewal process

ζε
n := ζε(τ ε

n), xn, τ ε
n := ε2τn, n ≥ 0 (20)

on the test-function ϕ(u, ·) ∈ C3(R) admit the asymptotic representation

Lεϕ(u, x) = [ε−2Q + ε−1Q1(x) + Q2(x)]ϕ(u, x) + θε
l ϕ(u, x) (21)

where
Q1(x)ϕ(u) = q(x)Peb(x)ϕ′(u), (22)

Q2(x)ϕ(u) =
1

2
q(x)PC(x)ϕ′′(u), (23)

and the remainder operator θε
l satisfies the negligible condition:

||θε
l ϕ(u)|| → 0, ε → 0, ϕ(u) ∈ C3(R). (24)

The limit operator

Lϕ(u) =
1

2
σ2ϕ′′(u)

is determined by a solution of the singular perturbation problem for the truncated
operator

Lε
0ϕ

ε := [ε−2Q+ε−1Q1+Q2](ϕ(u)+εϕ1(u, x)+ε2ϕ2(u, x)) = Lϕ(u)+θε
0ϕ(u). (25)

According to Lemma 3.3 [Korolyuk and Korolyuk, 1999] (p.51) the operator L in
(25) is calculated by the formula

LΠ = ΠQ2Π − ΠQ1R0Q1Π, (26)

where the projector Π is defined by the stationary distribution of the associated
Markov process with the generator Q = q(x)[P − I ], q(x) = 1/m(x), m(x) := Eθx.

After some computation we obtain the result of Theorem 1.
The verification of the algorithm of diffusion approximation follows some famil-

iar procedure in the theory of convergence of stochastic processes [Ethier and Kurtz,
1986], [Jacod and Shiryaev, 1987], adapted to the semi-Markov switching process
in [Korolyuk and Limnios, 2002a], [Korolyuk and Limnios, 2004a], [Korolyuk and
Limnios, (2004b].
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