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Abstract. In this paper we present a diffusion approximation algorithm for a
centered semi-Markov random walks in the series scheme with the small parameter
series € — 0, (¢ > 0).

1 The semi-Markov random walk

The semi-Markov random walk (SMRW) is defined on the real line R = (—o00, +00)
by the superposition of two independent renewal processes of the i.i.d. sequences
of nonnegative random variables aki, k > 1, and the two sequences of nonnegative
independent i.i.d. random variables ﬁki, k > 1, as follows

vt (2) v (1)
(WO=ut+ Y b= B t20 1)
k=1 k=1
The renewal process are
vE@) = max{n: of St}, t>0 (2)
k=1
The distribution functions
Pe(t) = Plog <t}, Gi(u)=P{B; <u} 3)

are given.

SMRW (1) was investigated in average, diffusion and Poisson approximation
schemes under distinct assumption of semi-continuity [Korolyuk and Korolyuk,
1999], [Korolyuk, 1997], [Korolyuk, 1999], etc. This kind of processes are inter-
esting for various applied problems. The number of customs in the queue system is
described by (1) with the given distribution function of arrival and service time and
with . The process (1) can be considered as a mathematical model of risk process
with arbitrary distribution of interval between moments of payment of claims and
the premium income.

In this paper we discuss a centered normalized in diffusion approximation
scheme (see process (12) below).
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2 The superposition of two renewal processes

Relation (2) can be described by the counting process
v(t)=v () +v (), t2=0, (4)

for the Markov renewal process z.,,7Tn,n > 0, on the phase space ¥ = E; U
E_,E+ = {£,z > 0} by the formula of sojourn times 6,11 := Tny1 —Tn, n >0
[Korolyuk and Korolyuk, 1999]:

0 =a* Aa. (5)

The transition probabilities of the embedded Markov chain (EMC)
Zn,On,n > 0, is defined by the matrix [Korolyuk and Limnios, (2004b]

([ Pi(z —dy) Pi(z+dy)
P(z, dy) = <Pt(x+dz) Pi(xfdz)>'

The stationary distribution of the EMC has the density
p+(t) =P+(t)/a, a:=ar+a_, as:=Ea . (7

As usual, Py (t) := 1 — Px(t).
The embedded SMRW (,, := ((7n),n > 0, is defined by the relations

Cn+1 = Cn + ﬂn+17 n 2 07 (8)
Brt1 =Bt 1 I(@n1 € Ey) — B I (zns1 € E-),

where, as usual, J(A) is the indicator of a random event A.
The SMRW (1) can be defined as follows: ((t) = (,(1),t > 0. It is worth noticing
that the average drift per unit time of the SMRW (1) is defined by the value

b=by/ay —b_Ja_, by :=EFE (9)

The average algorithm for SMRW (1) is realized in the following series scheme
with the small series parameter ¢ — 0 (¢ > 0):

vt (t/e) v (t/e)
CW)=u+e > Bf—-c > B, t>0 (10)
k=1 k=1
Under the condition b # 0, the weak convergence takes place:

C(t) = Co(t) =u+bt, &— 0. (11)

3 The algorithm of diffusion approximation

The centered SMRW in the series scheme is considered as follows:

v (t/e?) voese?y T

CW=ute| > Bi—e > B| —brt/ed). (12)
k=1 k=1
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The renewal process 7(t) := T,(),t > 0, defines the last renewal moment before
time ¢.
Introduce the random variables

it is worth noticing that, for any z € E4,

bi(z) = E[fnt1|zn = 2] = £[bs Pi(2) — be P ()] (14)
and
bs(z) = Elyns1|en = 2] = b (2) — bax (), (15)
where
a+(z) = Elnyi|z, = 2] = /0 Pi(t)dt. (16)

The centered SMRW (12) can be represented in the following form:

v(t/e?)
M) =ute Y m t>0. (17)

n=1

Theorem 1 Let b # 0 defined in (9) and the third moments E[3]> < co. Then
the weak convergence

)= ) =utow(t), €—0 (18)

takes place. The variance o of the standard Wiener process w(t) is calculated by

the formulae:

o = of + 0t — ok,
02 = q [Zlp+ (2)C1 (2) + p- (2)C- (2))da,
0% = 2 [ [ (@)hy () + 7 (2)h_(2)]de,

03 = 24 [ [p+ (D) (2) + p- ()P (2)]d.

(19)
Here, by definition:
Ci 1= B2 s1lwn = 2],
h = =D (2) Ry by (2), B4 (2) := b /ax (),

7i(2) == gpi(2)as(@),q = 1/as +1/a_,

where T € F+.

The potential operator RgE is defined for the generator of the Markov kernel
Q= q(z)[P —1I].

Remark. It is worth noticing that o7 — o2 > 0.
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4 Scheme of Proof

The construction of the algorithm of diffusion approximation is realized by the
scheme introduced in our papers [Korolyuk and Limnios, 2004a] and [Korolyuk
and Limnios, (2004b].

The compensating operator L of the extended Markov renewal process

CTEL = CE(TTEL)7 Tn, TTEL = 627—”7 n 2 0 (20)

on the test-function ¢(u,-) € C*(R) admit the asymptotic representation

Lop(u,2) = [ 2Q + &7 @i(@) + Qa(@lp(w,2) + 0w ) (21)

where
Qu(w)p(u) = a(ax) Ph(a) ¢ (u), (22
Qa()p(w) = 5a(x) PC(2)¢" (), (23

and the remainder operator 0] satisfies the negligible condition:
107 o(w)l| = 0,e — 0,¢(u) € C*(R). (24)

The limit operator
1 5
Lip(u) = 507" (u)
is determined by a solution of the singular perturbation problem for the truncated
operator

Lig® = [ Q+e " QutQal(p(u)+epi(u, )+ pa(u, ) = Lip(u) +050(w). (25)

According to Lemma 3.3 [Korolyuk and Korolyuk, 1999] (p.51) the operator L in
(25) is calculated by the formula

LIT = IQ2I1 — ITQ1RoQ: 11, (26)

where the projector II is defined by the stationary distribution of the associated
Markov process with the generator Q = q(z)[P — I],q(z) = 1/m(z), m(x) := Eb,.

After some computation we obtain the result of Theorem 1.

The verification of the algorithm of diffusion approximation follows some famil-
iar procedure in the theory of convergence of stochastic processes [Ethier and Kurtz,
1986], [Jacod and Shiryaev, 1987], adapted to the semi-Markov switching process
in [Korolyuk and Limnios, 2002a], [Korolyuk and Limnios, 2004a], [Korolyuk and
Limnios, (2004b].
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