Time-Average Optimality for Semi-Markov Control Processes with Feller Transition Probabilities

Anna Jaśkiewicz¹ and Andrzej S. Nowak²

1	Instytut Matematyki
	Politechnika Wrocławska
	50-370 Wrocław, Poland
	(e-mail: ajaskiew@im.pwr.wroc.pl)
2	Wydział Matematyki, Informatyki i Ekonometrii
	Uniwersytet Zielonogórski
	65-516 Zielona Góra, Poland
	(e-mail: a.nowak@wmie.uz.zgora.pl)

Abstract. Semi-Markov control processes with Borel state space and Feller transition probabilities are considered. We prove that under fairly general conditions the two expected average costs: the time-average and the ratio-average coincide for stationary policies. Moreover, the optimal stationary policy for the ratio-average cost criterion is also optimal for the time-average cost criterion.

Keywords: semi-Markov control models, average cost optimality equation.

1 The model

Let X and A be Borel spaces, the state and the action space, respectively. By A(x) we denote the compact set of actions available in state x. Define

$$K := \{ (x, a) : x \in X, a \in A(x) \},\$$

the set of admissible pairs as a Borel subset of $X \times A$.

If the current state is x and an action $a \in A(x)$ is selected, then the immediate cost of $c_1(x, a)$ is incurred and the system remains in state $x_0 = x$ for a

random time T with the cumulative distribution $G(\cdot|x, a)$ depending only on x and a. The cost of $c_2(x, a)$ per unit time is incurred until the next transition occurs. Afterwards the system jumps to the state $x_1 = y$ according to the probability distribution (*transition law*) $q(\cdot|x, a)$. This procedure repeats itself and yields a trajectory $(x_0, a_0, t_1, x_1, a_1, t_2, \ldots)$ of some stochastic process, where x_n is the state, a_n is the control variable and t_n is the time of the *n*th transition, $n \ge 0$.

A control policy $\pi = \{\pi_n\}$ and a stationary policy $\pi = \{f, f, \ldots\}$ are defined in a usual way. By Π and F we denote the set of all policies and the set of all stationary policies, respectively. Further, we will identify any stationary policy $\pi = \{f, f, \ldots\}$ with $f \in F$.

1052 Jaśkiewicz and Nowak

Let (Ω, \mathcal{F}) be the measurable space consisting of the sample space $\Omega := (X \times A \times [0, +\infty))^{\infty}$ and the corresponding product σ -algebra \mathcal{F} . Obviously, any policy π , the transition law q, and the conditional cumulative distribution function G of the differences $\{T_{n+1} - T_n\}$ generate the stochastic process $\{x_n, a_n, T_n\}, n \geq 0$ on (Ω, \mathcal{F}) .

Let E_x^{π} be the expectation operator with respect to the probability measure P_x^{π} defined on the product space Ω .

Let $\pi \in \Pi$, $x \in X$ and $t \ge 0$ be fixed. Put

$$N(t) := \max\{n \ge 0 : T_n \le t\}$$

as the counting process, and

$$\tau(x,a) := \int_0^\infty t P_x^a(dt) = \int_0^\infty t G(dt|x,a) = E_x^a T$$

as the mean holding (sojourn) time. By our assumptions $P_x^{\pi}(N(t) < \infty) = 1$

We shall consider the two average expected costs:

- the ratio-average cost

$$J(x,\pi) := \limsup_{n \to \infty} \frac{E_x^{\pi} \left(\sum_{k=0}^{n-1} c(x_k, a_k) \right)}{E_x^{\pi} T_n},$$

- the time-average cost

$$j(x,\pi) := \limsup_{t \to \infty} \frac{E_x^{\pi} \left(\sum_{k=0}^{N(t)} c(x_k, a_k) \right)}{t}$$

where

$$c(x, a) := c_1(x, a) + \tau(x, a)c_2(x, a)$$

for each $(x, a) \in K$.

We impose the following assumptions on the model.

(B) Basic assumptions:

(i) for each $x \in X$, A(x) is a compact metric space and, moreover, the setvalued mapping $x \mapsto A(x)$ is upper semicontinuous, i.e. $\{x \in X : A(x) \cap B \neq \emptyset\}$ is closed for every closed set B in A;

(ii) the cost function c is lower semicontinuous on K;

(iii) the transition law q is weakly continuous on K, i.e.,

$$\int_X u(y)q(dy|x,a)$$

is continuous function of (x, a) for every bounded continuous function u on X;

(iv) the mean holding time τ is continuous on K, and there exist positive constants b and B such that

$$b \le \tau(x, a) \le B$$

for all $(x, a) \in K$;

(v) there exist a constant L > 0 and a continuous function $V : X \mapsto [1, \infty)$ such that $|c(x, a)| \leq LV(x)$ for every $(x, a) \in K$; (vi) the function

$$\int_X V(y)(dy|x,a)$$

is continuous on K.

(GE) Geometric ergodicity assumptions:

(i) there exists a Borel set $C \subset X$ such that for some $\lambda \in (0, 1)$ and $\eta > 0$, we have

$$\int_X V(y)q(dy|x,a) \le \lambda V(x) + \eta \mathbf{1}_C(x)$$

for each $(x, a) \in K$; V is the function introduced in (**B**, v); (ii) the function V is bounded on C, i.e.,

$$v_C := \sup_{x \in C} V(x) < \infty;$$

(iii) there exist some $\delta \in (0, 1)$ and a probability measure μ concentrated on the Borel set C with the property that

$$q(D|x,a) \ge \delta \mu(D)$$

for each Borel set $D \subset C$, $x \in C$ and $a \in A(x)$.

For any function $u: X \mapsto R$ define the V-norm

$$||u||_V := \sup_{x \in X} \frac{|u(x)|}{V(x)}$$

By L_V^{∞} we denote the Banach space of all Borel measurable functions u for which $||u||_V$ is finite.

Let L_V denote the subset of L_V^∞ consisting of all lower semicontinuous functions.

Under (**GE**) the embedded state process $\{x_n\}$ governed by a stationary policy is a positive recurrent aperiodic Markov chain and for each stationary policy f, there exists a unique invariant probability measure, denoted by π_f (see Theorem 11.3.4 and page 116 in [Meyn and Tweedie, 1993]). Moreover, by Theorem 2.3 in [Meyn and Tweedie, 1994], $\{x_n\}$ is V-uniformly ergodic. Thi results in the following

$$J(f) := J(x, f) = \frac{\int_X c(x, f(x))\pi_f(dx)}{\int_X \tau(x, f(x))\pi_f(dx)}$$

1054 Jaśkiewicz and Nowak

for every $f \in F$.

We also make two additional assumptions on the sojourn time T.

(**R**) Regularity condition: there exist $\epsilon > 0$ and $\beta < 1$ such that

$$P_x^a(T \le \epsilon) \le \beta$$

for all $x \in C$ and $a \in A(x)$. (I) Uniform integrability condition:

$$\lim_{t \to \infty} \sup_{x \in C} \sup_{a \in A(x)} P_x^a(T > t) = 0.$$

For further and broad discussion of the assumptions the reader is referred to [Jaśkiewicz, 2001] and [Ross, 1970].

2 Main results

In this section we present two new theorems on SMCPs with Borel state spaces. Theorem 1 concerns the existence of the optimal stationary policy for the ratio-average criterion. The proof combines some ideas and tools used in [Jaśkiewicz, 2001].

For the ε -perturbed SMCPs, we prove that the associated with them the average cost optimality equation has a solution.

Next, taking into account slightly modified solutions, we obtain a certain optimality inequality, which is enough to obtain an average optimal policy. It is worth pointing out that compared with previous work [Jaśkiewicz, 2001] in the limit passage we need to use of Fatou's lemma for weakly convergent measures [Serfozo, 1982].

THEOREM 1. Assume (**B**, **GE**). There exist a constant g^* , a function $h_* \in L_V$ and $f^* \in F$ such that

$$h_*(x) \ge \min_{a \in A(x)} \left[c(x,a) - g^* \tau(x,a) + \int_X h_*(y) q(dy|x,a) \right]$$
(1)
= $c(x, f^*(x)) - g^* \tau(x, f^*(x)) + \int_X h_*(y) q(dy|x, f^*(x))$

for all $x \in X$. Moreover, f^* is an average optimal policy and g^* is optimal cost with respect to the ratio-average criterion, i.e.,

$$g^* = \inf_{\pi \in \Pi} J(x,\pi) = J(f^*)$$

for every $x \in X$.

Theorem 2 deals with the equivalence of the two expected average cost criteria for SMCPs with Feller transition probabilities. Related result under the strong continuity of $q(\cdot|x, a)$ in $a \in A(x)$ is given in [Jaśkiewicz, 2004].

To obtain the mentioned equivalence we use two inequalities as the point of departure. Using them we define a supermartingale and submartingale, and then by Doob's theorem we obtain the equality of the two optimal costs according to the ratio-average and time-average cost criteria. To apply the optional sampling theorem we have to prove the uniform integrability of the supermartingale and submartingale involved. This issue is studied in [Jaśkiewicz, 2004]. The whole analysis relies on dealing with the consecutive returns of the process (induced by q, an arbitrary π , and the cumulative distribution G) to the small set C.

THEOREM 2. Assume (**B**, **GE**, **R**, **I**). Then (a) $g^* = \inf_{\pi \in \Pi} j(x, \pi)$; (b) j(x, f) = J(x, f) for any $f \in F$.

References

- [Jaśkiewicz, 2001]A. Jaśkiewicz. An approximation approach to ergodic semimarkov control processes. Math. Methods Oper. Res., pages 1–19, 2001.
- [Jaśkiewicz, 2004]A. Jaśkiewicz. On the equivalence of two expected average cost criteria for semi-markov control processes. *Math. Oper. Res.*, pages 326–338, 2004.
- [Meyn and Tweedie, 1993]S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag, New York, 1993.
- [Meyn and Tweedie, 1994]S.P. Meyn and R.L. Tweedie. Computable bounds for geometric convergence rates of markov chains. Ann. Appl. Prob., pages 981– 1011, 1994.
- [Ross, 1970]S.M. Ross. Applied Probability Models with Optimization Applications. Holden-Day, San Francisco, 1970.
- [Serfozo, 1982]R. Serfozo. Convergence of lebesgue integrals with varying measures. Sankhya, Ser. A, pages 380–402, 1982.