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Abstract. Semi-Markov control processes with Borel state space and Feller tran-
sition probabilities are considered. We prove that under fairly general conditions
the two expected average costs: the time-average and the ratio-average coincide for
stationary policies. Moreover, the optimal stationary policy for the ratio-average
cost criterion is also optimal for the time-average cost criterion.
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1 The model

Let X and A be Borel spaces, the state and the action space, respectively.
By A(x) we denote the compact set of actions available in state x. Define

K := {(x, a) : x ∈ X, a ∈ A(x)},

the set of admissible pairs as a Borel subset of X × A.

If the current state is x and an action a ∈ A(x) is selected, then the
immediate cost of c1(x, a) is incurred and the system remains in state x0 = x

for a
random time T with the cumulative distribution G(·|x, a) depending only

on x and a. The cost of c2(x, a) per unit time is incurred until the next tran-
sition occurs. Afterwards the system jumps to the state x1 = y according to
the probability distribution (transition law) q(·|x, a). This procedure repeats
itself and yields a trajectory (x0, a0, t1, x1, a1, t2, . . .) of some stochastic pro-
cess, where xn is the state, an is the control variable and tn is the time of
the nth transition, n ≥ 0.

A control policy π = {πn} and a stationary policy π = {f, f, . . .} are
defined in a usual way. By Π and F we denote the set of all policies and
the set of all stationary policies, respectively. Further, we will identify any
stationary policy π = {f, f, . . .} with f ∈ F.
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Let (Ω,F) be the measurable space consisiting of the sample space Ω :=
(X ×A× [0, +∞))∞ and the corresponding product σ-algebra F . Obviously,
any policy π, the transition law q, and the conditional cumulative distribution
function G of the differences {Tn+1 − Tn} generate the stochastic process
{xn, an, Tn}, n ≥ 0 on (Ω,F).

Let Eπ
x be the expectation operator with respect to the probability mea-

sure P π
x defined on the product space Ω.

Let π ∈ Π, x ∈ X and t ≥ 0 be fixed. Put

N(t) := max{n ≥ 0 : Tn ≤ t}

as the counting process, and

τ(x, a) :=

∫

∞

0

tP a
x (dt) =

∫

∞

0

tG(dt|x, a) = Ea
xT

as the mean holding (sojourn) time. By our assumptions P π
x (N(t) < ∞) = 1

We shall consider the two average expected costs:
- the ratio-average cost

J(x, π) := lim sup
n→∞

Eπ
x

(

∑n−1
k=0 c(xk, ak)

)

Eπ
x Tn

,

- the time-average cost

j(x, π) := lim sup
t→∞

Eπ
x

(

∑N(t)
k=0 c(xk, ak)

)

t
,

where

c(x, a) := c1(x, a) + τ(x, a)c2(x, a)

for each (x, a) ∈ K.

We impose the following assumptions on the model.

(B) Basic assumptions:
(i) for each x ∈ X , A(x) is a compact metric space and, moreover, the set-
valued mapping x 7→ A(x) is upper semicontinuous, i.e. {x ∈ X : A(x)∩B 6=
∅} is closed for every closed set B in A;
(ii) the cost function c is lower semicontinuous on K;
(iii) the transition law q is weakly continuous on K, i.e.,

∫

X

u(y)q(dy|x, a)

is continuous function of (x, a) for every bounded continuous function u on
X ;
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(iv) the mean holding time τ is continuous on K, and there exist positive
constants b and B such that

b ≤ τ(x, a) ≤ B

for all (x, a) ∈ K;
(v) there exist a constant L > 0 and a continuous function V : X 7→ [1,∞)
such that |c(x, a)| ≤ LV (x) for every (x, a) ∈ K;
(vi) the function

∫

X

V (y)(dy|x, a)

is continuous on K.

(GE) Geometric ergodicity assumptions:
(i) there exists a Borel set C ⊂ X such that for some λ ∈ (0, 1) and η > 0,
we have

∫

X

V (y)q(dy|x, a) ≤ λV (x) + η1C(x)

for each (x, a) ∈ K; V is the function introduced in (B, v);
(ii) the function V is bounded on C, i.e.,

vC := sup
x∈C

V (x) < ∞;

(iii) there exist some δ ∈ (0, 1) and a probability measure µ concentrated on
the Borel set C with the property that

q(D|x, a) ≥ δµ(D)

for each Borel set D ⊂ C, x ∈ C and a ∈ A(x).

For any function u : X 7→ R define the V-norm

‖u‖V := sup
x∈X

|u(x)|

V (x)
.

By L∞

V we denote the Banach space of all Borel measurable functions u for
which ‖u‖V is finite.

Let LV denote the subset of L∞

V consisting of all lower semicontinuous
functions.

Under (GE) the embedded state process {xn} governed by a stationary
policy is a positive recurrent aperiodic Markov chain and for each stationary
policy f, there exists a unique invariant probability measure, denoted by πf

(see Theorem 11.3.4 and page 116 in [Meyn and Tweedie, 1993]). Moreover,
by Theorem 2.3 in [Meyn and Tweedie, 1994], {xn} is V -uniformly ergodic.
Thi results in the following

J(f) := J(x, f) =

∫

X
c(x, f(x))πf (dx)

∫

X
τ(x, f(x))πf (dx)
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for every f ∈ F.

We also make two additional assumptions on the sojourn time T.

(R) Regularity condition:
there exist ε > 0 and β < 1 such that

P a
x (T ≤ ε) ≤ β

for all x ∈ C and a ∈ A(x).
(I) Uniform integrability condition:

lim
t→∞

sup
x∈C

sup
a∈A(x)

P a
x (T > t) = 0.

For further and broad discussion of the assumptions the reader is referred
to [Jaśkiewicz, 2001] and [Ross, 1970].

2 Main results

In this section we present two new theorems on SMCPs with Borel state
spaces. Theorem 1 concerns the existence of the optimal stationary policy
for the ratio-average criterion. The proof combines some ideas and tools used
in [Jaśkiewicz, 2001].

For the ε-perturbed SMCPs, we prove that the associated with them the
average cost optimality equation has a solution.

Next, taking into account slightly modified solutions, we obtain a certain
optimality inequality, which is enough to obtain an average optimal policy.
It is worth pointing out that compared with previous work [Jaśkiewicz, 2001]
in the limit passage we need to use of Fatou’s lemma for weakly convergent
measures [Serfozo, 1982].

Theorem 1. Assume (B, GE). There exist a constatant g∗, a function
h∗ ∈ LV and f∗ ∈ F such that

h∗(x) ≥ min
a∈A(x)

[

c(x, a) − g∗τ(x, a) +

∫

X

h∗(y)q(dy|x, a)

]

(1)

= c(x, f∗(x)) − g∗τ(x, f∗(x)) +

∫

X

h∗(y)q(dy|x, f∗(x))

for all x ∈ X. Moreover, f∗ is an average optimal policy and g∗ is optimal
cost with respect to the ratio-average criterion, i.e.,

g∗ = inf
π∈Π

J(x, π) = J(f∗)
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for every x ∈ X.

Theorem 2 deals with the equivalence of the two expected average cost
criteria for SMCPs with Feller transition probabilities. Related result under
the strong continuity of q(·|x, a) in a ∈ A(x) is given in [Jaśkiewicz, 2004].

To obtain the mentioned equivalence we use two inequalities as the point
of departure. Using them we define a supermartingale and submartingale,
and then by Doob’s theorem we obtain the equality of the two optimal costs
according to the ratio-average and time-average cost criteria. To apply the
optional sampling theorem we have to prove the uniform integrability of
the supermartingale and submartingale involved. This issue is studied in
[Jaśkiewicz, 2004]. The whole analysis relies on dealing with the consecutive
returns of the process (induced by q, an arbitrary π, and the cumulative
distribution G) to the small set C.

Theorem 2. Assume (B, GE, R, I). Then
(a) g∗ = infπ∈Π j(x, π);
(b) j(x, f) = J(x, f) for any f ∈ F.
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