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Abstract. Semi-Markov control processes with Borel state space and Feller tran-
sition probabilities are considered. We prove that under fairly general conditions
the two expected average costs: the time-average and the ratio-average coincide for
stationary policies. Moreover, the optimal stationary policy for the ratio-average
cost criterion is also optimal for the time-average cost criterion.
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1 The model

Let X and A be Borel spaces, the state and the action space, respectively.
By A(z) we denote the compact set of actions available in state . Define

K :={(z,a) : 2 € X,a € A(x)},

the set of admissible pairs as a Borel subset of X x A.

If the current state is = and an action a € A(x) is selected, then the
immediate cost of ¢;(z,a) is incurred and the system remains in state g = x
for a

random time T with the cumulative distribution G(|z,a) depending only
on z and a. The cost of ca(x, a) per unit time is incurred until the next tran-
sition occurs. Afterwards the system jumps to the state x; = y according to
the probability distribution (transition law) ¢(-|z,a). This procedure repeats
itself and yields a trajectory (xg, ag, t1, 21, a1,t2,...) of some stochastic pro-
cess, where x,, is the state, a,, is the control variable and ¢,, is the time of
the nth transition, n > 0.

A control policy m = {m,} and a stationary policy = = {f, f,...} are
defined in a usual way. By II and F' we denote the set of all policies and
the set of all stationary policies, respectively. Further, we will identify any
stationary policy # = {f, f,...} with f € F.
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Let (£2,F) be the measurable space consisiting of the sample space {2 :=
(X x A x[0,400))> and the corresponding product o-algebra F. Obviously,
any policy 7, the transition law ¢, and the conditional cumulative distribution
function G of the differences {T},+1 — T,} generate the stochastic process
{Zn,an, Tp}, n>0on (2,F).

Let ET be the expectation operator with respect to the probability mea-
sure PJ defined on the product space f2.

Let m € II, x € X and t > 0 be fixed. Put

N(t) :=max{n >0:T, <t}
as the counting process, and
T(x,a) ::/ tP2(dt) :/ tG(dt|xz,a) = E2T
0 0
as the mean holding (sojourn) time. By our assumptions PT(N(¢) < o) =1

We shall consider the two average expected costs:
- the ratio-average cost

BT (X020 clan, an))
J(z,7) := limsup T :

- the time-average cost

| B (2 clan,an)
j(x, ) ;= limsup

)
t—oo t

where

c(z,a) :=ci(z,a) + 7(x,a)ca(z, a)

for each (z,a) € K.
We impose the following assumptions on the model.

(B) Basic assumptions:
(i) for each x € X, A(x) is a compact metric space and, moreover, the set-
valued mapping x — A(x) is upper semicontinuous, i.e. {x € X : A(x)NB #
0} is closed for every closed set B in A;
(ii) the cost function ¢ is lower semicontinuous on K;
(iii) the transition law ¢ is weakly continuous on K, i.e.,

/ u(y)q(dylz, a)
X

is continuous function of (z,a) for every bounded continuous function u on
X.

b
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(iv) the mean holding time 7 is continuous on K, and there exist positive
constants b and B such that

b<7(r,a) <B

for all (z,a) € K

(v) there exist a constant L > 0 and a continuous function V : X — [1, 00)
such that |c(x,a)| < LV (z) for every (z,a) € K

(vi) the function

/X V(y)(dylz, a)

is continuous on K.

(GE) Geometric ergodicity assumptions:

(i) there exists a Borel set C' C X such that for some A € (0,1) and n > 0,
we have

/X V()a(dylz,a) < AV(z) + e (z)

for each (z,a) € K; V is the function introduced in (B, v);
(ii) the function V is bounded on C, i.e.,

ve = sup V(z) < oo;
zeC

(i) there exist some ¢ € (0,1) and a probability measure p concentrated on
the Borel set C' with the property that

q(D|z,a) = op(D)
for each Borel set D C C, x € C and a € A(x).

For any function u : X +— R define the V-norm

|u(z)]
ully = sup .
[l S T
By L3® we denote the Banach space of all Borel measurable functions u for
which ||ul|y is finite.
Let Ly denote the subset of LY consisting of all lower semicontinuous
functions.

Under (GE) the embedded state process {x,} governed by a stationary
policy is a positive recurrent aperiodic Markov chain and for each stationary
policy f, there exists a unique invariant probability measure, denoted by 7
(see Theorem 11.3.4 and page 116 in [Meyn and Tweedie, 1993]). Moreover,
by Theorem 2.3 in [Meyn and Tweedie, 1994], {x,,} is V-uniformly ergodic.
Thi results in the following

o Jeela (@) (dn)
T = I D) = G F @y )
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for every f € F.
We also make two additional assumptions on the sojourn time 7'

(R) Regularity condition:
there exist € > 0 and 8 < 1 such that

P T <e)<p

for all x € C' and a € A(x).
(I) Uniform integrability condition:

lim sup sup P2(T >t)=0.
=0 2eC acA(x)

For further and broad discussion of the assumptions the reader is referred
to [Jaskiewicz, 2001] and [Ross, 1970].

2  Main results

In this section we present two new theorems on SMCPs with Borel state
spaces. Theorem 1 concerns the existence of the optimal stationary policy
for the ratio-average criterion. The proof combines some ideas and tools used
in [Jagkiewicz, 2001].

For the e-perturbed SMCPs, we prove that the associated with them the
average cost optimality equation has a solution.

Next, taking into account slightly modified solutions, we obtain a certain
optimality inequality, which is enough to obtain an average optimal policy.
It is worth pointing out that compared with previous work [Jaskiewicz, 2001]
in the limit passage we need to use of Fatou’s lemma for weakly convergent
measures [Serfozo, 1982].

THEOREM 1. Assume (B, GE). There exist a constatant g*, a function
hy € Ly and f* € F such that

he(x) > min |c(z,a) — g*7(z,a) Jr/

a€A(z) . h*(ll)‘](dm»’c,a)] (1)

= oz, *(2)) - g"r(z, f*(2)) + /X he()a(dyle, £ (2))

for all x € X. Moreover, f* is an average optimal policy and ¢g* is optimal
cost with respect to the ratio-average criterion, i.e.,

g" = inf Ja,m) = J(f")
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for every x € X.

Theorem 2 deals with the equivalence of the two expected average cost
criteria for SMCPs with Feller transition probabilities. Related result under
the strong continuity of ¢(:|z,a) in a € A(x) is given in [Jaskiewicz, 2004].

To obtain the mentioned equivalence we use two inequalities as the point
of departure. Using them we define a supermartingale and submartingale,
and then by Doob’s theorem we obtain the equality of the two optimal costs
according to the ratio-average and time-average cost criteria. To apply the
optional sampling theorem we have to prove the uniform integrability of
the supermartingale and submartingale involved. This issue is studied in
[Jaskiewicz, 2004]. The whole analysis relies on dealing with the consecutive
returns of the process (induced by ¢, an arbitrary m, and the cumulative
distribution G) to the small set C.

THEOREM 2. Assume (B, GE, R, I). Then
(a) g = infren j(z,7);
(b) j(z, f) = J(, f) for any f € F.
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