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Abstract. Vaccine induced protection against infection is often random. A con-
cept of protective vaccine efficacy, depending on the mean relative susceptibility
of vaccinated individuals, is considered for a large vaccine trial in which partici-
pants are recruited over a period of time. Bounds are derived that make statistical
inference possible under weak assumptions about the transmission process, irre-
spectively of the type of protection induced by the vaccine.
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1 Introduction

A standard concept of vaccine efficacy is defined as

VEP = 1 −
c
V

c
U

, (1)

c
U

and c
V

representing the proportions of cases among unvaccinated and
vaccinated individuals, respectively.

As pointed out by, e.g., [Smith and Fine, 1984], vaccine efficacy depends
on the type of the protection induced by a vaccine. Two types of vaccine
response are usually discussed. A first case is when a vaccinee receives either
complete protection or no protection against infection (i.e. the vaccine con-
fers a complete/no (CN in short) protection). A second case is when every
vaccinee receives exactly the same partial protection (i.e. the vaccine confers
a partial/uniform (PU in short) protection).

Recently, [Becker and Utev, 2002] introduced a class of vaccine responses
that includes CN and PU protection as particular cases. Shortly, if at time
t, the force of infection acting on an unvaccinated susceptible individual is
λ(t), then the force of infection acting on a vaccinated susceptible individual
is reduced to Aλ(t), A denoting a discrete random variable with probability
distribution

Pr(A = aj) = pj, j = 1, . . . , r, (2)
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where the possible values aj are in [0, 1]. These authors proposed for this
class a concept of protective vaccine efficacy given by

VEP = 1 − EA. (3)

When a vaccine induces CN protection, (3) yields VEP = p1, i.e. the prob-
ability that the vaccinee is completely protected. For PU protection, (3)
becomes VEP = 1 − a1, i.e. the per-contact reduction in the probability of
disease transmission.

Estimating VEP from data on the eventual numbers of vaccinated and
unvaccinated cases requires to specify assumptions about the type of vaccine
response. [Becker and Utev, 2002] showed, however, that for a standard
model of epidemics in a large uniformly mixing community, the inequality

1 −
c
V

c
U

≤ VEP ≤ 1 −
ln(1 − c

V
)

ln(1 − c
U
)
, (4)

holds independently of all types of protection induced. These bounds are
estimable from data on the eventual numbers of vaccinated and unvaccinated
cases, and seem to be close enough to be used for inference about VEP.

Our purpose in the present paper is to show how to extend the analy-
sis made in [Becker and Utev, 2002] to a more general model (i) based on
less restrictive assumptions about the force of infection and (ii) allowing for
recruitments of participants over time (which is useful for large field trials
and/or for rather rare diseases). As a key result, we will obtain lower and
upper bounds that are analogous to (but different fom) those given in (4).
Furthermore, we will then prove that if the vaccination coverage remains con-
stant over time, the lower bound can provide a good estimate of the vaccine
efficacy.

This is a joint work with Niels Becker (The Australian National Uni-
versity, Canberra, Australia) and Sergey Utev (University of Nottingham,
Nottingham, United Kingdom).

2 An epidemic model with vaccination

Denote by A the relative susceptibility of a vaccinated individual, such as
defined by (2). Vaccinated individuals for which A = aj are said to be of
type j, and unvaccinated individuals are said to be of type U. In practice,
only unvaccinated (U) and vaccinated (V) individuals can be distinguished.

The population sizes are described by a deterministic model (valid for
large trials). Let N

U
(t) be the number of unvaccinated trial participants

recruited by time t, and let N
V
(t) be the number of vaccinated trial members

recruited by time t. Initially, there are n individuals of whom a fraction u
are unvaccinated and a fraction v are vaccinated (u + v = 1). In Section 3,
the proportion of vaccinated trial participants will be assumed to be always
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as large as its initial level v. In particular, the vaccination coverage can then
remain constant.

At time 0, the numbers of susceptible trial participants are given by

S
U
(0) = nu, and Sj(0) = nvpj, j = 1, . . . , r.

Let λ(t) be the force of infection on an unvaccinated individual. Then, the
number of unvaccinated trial members who are susceptible to infection at
time t is ruled by the differential equation

dS
U
(t) = −λ(t)S

U
(t) dt + dN

U
(t).

For the vaccinated members, these numbers are governed by the differential
equations

dSj(t) = −ajλ(t)Sj(t) dt + pj dN
V
(t), j = 1, . . . , r.

Putting Λ(t) =
∫ t

0
λ(x) dx, the solutions to these equations are respectively

given by

S
U
(t) =

∫ t

0−

exp[Λ(x) − Λ(t)] dN
U
(x), (5)

and

Sj(t) = pj

∫ t

0−

exp[ajΛ(x) − ajΛ(t)] dN
V
(x), j = 1, . . . , r. (6)

Let us fix any finite time interval [0, T ]. The number of unvaccinated trial
participants who are cases by time T is

C
U

= N
U
(T ) − S

U
(T ),

and the number of vaccinated cases by time T is

C
V

= N
V
(T ) −

r∑

j=1

Sj(T ).

3 An estimator for the vaccine efficacy

As a first step, we begin by showing how (4) can be generalized to the present
framework.

Proposition 1 Provided that the proportion of vaccinated trial participants

remains in the course of time as large as its initial level v, then

1 −
u

v

C
V

C
U

≤ VEP ≤ 1 −
ln[1 − C

V
/N

V
(T )]

ln[1 − C
U
/N

U
(0)]

. (7)

Moreover, the lower bound is attained when the vaccine induces CN protection

and the vaccine trial has a non-varying vaccination coverage.
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In the proof, a central point is a simple inequality for the expectation of
a concave function of a random variable (see, e.g., [Becker and Utev, 2002]):
if g is a continuous concave function defined on a finite interval [c1, c2], then
for any random variable A taking values in [c1, c2],

g(c1)
c2 − EA

c2 − c1

+ g(c2)
EA − c1

c2 − c1

≤ E g(A) ≤ g(EA).

Now, let us give some comments on this result. We see that (7) reduces
to (4) when recruitment occurs only at time t = 0. We also observe that
the bounds of (4) still apply when recruitment occurs after time 0, but they
ignore data on individuals recruited after time t = 0. Obviously, (7) uses
data on individuals recruited after time 0, but the upper bound does so only
through CU , CV and NV (T ). Finally, we indicate that the upper bound in
(7) cannot be attained with recruitment after time 0, but it is attained when
the vaccine induces PU protection and the only recruitment is at time 0.

As a second step, we are going to derive an approximate estimator for
the vaccine efficacy. More precisely, let us assume that all vaccine trial par-
ticipants are recruited at k different instants during [0, T ]. Initially, in each
group i, i ∈ {1, . . . , k}, there are ni participants, and an identical vaccination
coverage v is applied to each group. In group i, an unvaccinated individual
escapes the disease with probability πi = exp(−Λi), Λi denoting a cumula-
tive force of infection upon this group until time T . A vaccinated individual
in group i escapes the disease with probability E[(πi)

A] where the random
variable A has a distribution given by (2).

It is well-known (see, e.g., [Smith and Fine, 1984]) that without recruit-
ment (i.e. when πi = π), and if the vaccine induces CN protection, the mea-
sure (1) constitutes a maximum likelihood estimator of the vaccine efficacy
VEP. Hereafter, we will consider the cases, rather frequent in reality, where
the different cumulative forces of infection Λi are all relatively small. We will
then show that the lower bound, 1 − uCV /vCU , derived in (7) provides a
good estimator for VEP.

Proposition 2 Under the condition that maxi(1 − πi) ↓ 0, then

V̂EP = 1 −
u

v

C
V

C
U

(8)

is asymptotically equivalent to a maximum likelihood estimator of VEP.

In the proof, the starting point is an expression for the global likelihood
function L as a function of the unknown parameters {πi, i = 1, . . . , k},
{pj, j = 1, . . . , r} and {aj , j = 1, . . . , r}. To construct L, we will have
to introduce the final number of cases among vaccinated and unvaccinated
participants in each group.

It is important to underline, however, that the only data needed for this
estimator are the final numbers of cases observed at time T .



1030 Lefèvre

An asymptotic distribution as n → ∞ can also be derived by using stan-
dard statistical arguments. First, a central limit theorem allows us to show
that the lower bound type estimator ÊA = uCV /vCU is approximately nor-
mal. Then, using inequalities between integrals of special functions of expo-
nential type, we are able to prove that the asymptotic mean of ÊA, denoted
by a, is given by

asimEA + α with 0 ≤ α ≤ ε/8(1 − ε)2, (9)

where ε = 1 − exp[−Λ(T )] is small by the assumption made before. The
variance can also be calculated in a similar way.
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